Gene-editing technologies promise to create a new class of therapeutics that can achieve permanent correction with a single intervention. Besides eliminating mutant alleles in familial disease, gene-editing can also be used to favorably manipulate upstream pathophysiologic events and alter disease-course in wider patient populations, but few such feasible therapeutic avenues have been reported. Here we use CRISPR-Cas9 to edit the last exon of amyloid precursor protein (), relevant for Alzheimer's disease (AD).
View Article and Find Full Text PDFPhosphorylation of α-synuclein at the serine-129 site (α-syn Ser129P) is an established pathologic hallmark of synucleinopathies and a therapeutic target. In physiologic states, only a fraction of α-syn is phosphorylated at this site, and most studies have focused on the pathologic roles of this post-translational modification. We found that unlike wild-type (WT) α-syn, which is widely expressed throughout the brain, the overall pattern of α-syn Ser129P is restricted, suggesting intrinsic regulation.
View Article and Find Full Text PDFEndolysosomal defects in neurons are central to the pathogenesis of prion and other neurodegenerative disorders. In prion disease, prion oligomers traffic through the multivesicular body (MVB) and are routed for degradation in lysosomes or for release in exosomes, yet how prions impact proteostatic pathways is unclear. We found that prion-affected human and mouse brain showed a marked reduction in Hrs and STAM1 (ESCRT-0), which route ubiquitinated membrane proteins from early endosomes into MVBs.
View Article and Find Full Text PDFThe accumulation and propagation of hyperphosphorylated tau (p-Tau) is a neuropathological hallmark occurring with neurodegeneration of Alzheimer's disease (AD). Extracellular vesicles, exosomes, have been shown to initiate tau propagation in the brain. Notably, exosomes from human-induced pluripotent stem cell (iPSC) neurons expressing the AD familial A246E mutant form of presenilin 1 (mPS1) are capable of inducing tau deposits in the mouse brain after injection.
View Article and Find Full Text PDFAccumulation and propagation of hyperphosphorylated Tau (p-Tau) is a common neuropathological hallmark associated with neurodegeneration of Alzheimer's disease (AD), frontotemporal dementia and parkinsonism linked to chromosome 17 (FTDP-17), and related tauopathies. Extracellular vesicles, specifically exosomes, have recently been demonstrated to participate in mediating Tau propagation in brain. Exosomes produced by human induced pluripotent stem cell (iPSC)-derived neurons expressing mutant Tau (mTau), containing the P301L and V337M Tau mutations of FTDP-17, possess the ability to propagate p-Tau pathology after injection into mouse brain.
View Article and Find Full Text PDFExtracellular vesicles (EVs) are a heterogeneous group of secreted particles consisting of microvesicles, which are released by budding of the cellular membrane, and exosomes, which are secreted through exocytosis from multivesicular bodies. EV cargo consists of a wide range of proteins and nucleic acids that can be transferred between cells. Importantly, EVs may be pathogenically involved in neurodegenerative diseases such as Alzheimer's disease (AD).
View Article and Find Full Text PDFAberrant aggregation of the protein tau is pathogenically involved in a number of neurodegenerative diseases, including Alzheimer's disease (AD). Although mouse models of tauopathy have provided a valuable resource for investigating the neurotoxic mechanisms of aggregated tau, it is becoming increasingly apparent that, due to interspecies differences in neurophysiology, the mouse brain is unsuitable for modeling the human condition. Advances in cell culture methods have made human neuronal cultures accessible for experimental use in vitro and have aided in the development of neurotherapeutics.
View Article and Find Full Text PDFProgressive accumulation of aggregation-prone proteins, amyloid-β (Aβ) and hyperphosphorylated tau (p-tau), are the defining hallmarks of Alzheimer's disease (AD). The mechanisms by which Aβ and p-tau are transmitted throughout the diseased brain are not yet completely understood. Interest in exosome research has grown dramatically over the past few years, specifically due to their potential role as biomarkers for staging of neurodegenerative diseases, including AD.
View Article and Find Full Text PDFSecreted amyloid precursor protein alpha (sAPPα) is a potent neurotrophin in the CNS but a dedicated receptor has not been found. However, protein interactions involving amyloid beta (Aβ), a peptide cleaved from the same parent peptide as sAPPα, indicate that insulin receptors (IRs) could be a target of amyloid peptides. In this study, in vitro analysis of cortical neuronal cultures revealed that exogenous sAPPα increased IR phosphorylation in the absence of insulin.
View Article and Find Full Text PDF