In niche-based community assembly theory, it is presumed that communities in habitats with high natural disturbance regimes are less likely to be structured by competitive mechanisms. Laurentian Great Lakes (hereafter Great Lakes) coastal wetlands can experience drastic diel fluctuations in dissolved oxygen levels, severe wave action, ice scour, and near complete freezing during the winter such that conditions are inhospitable for most organisms. The high natural disturbance levels are thought to cause high interannual turnover for aquatic macroinvertebrate communities and support the hypothesis that these communities are less likely to experience less competitive interactions and negative co-occurrence structure.
View Article and Find Full Text PDFAs the intensity and speed of environmental change increase at both local and global scales it is imperative that we gain a better understanding of the ecological implications of community shifts. While there has been substantial progress toward understanding the drivers and subsequent responses of community change (e.g.
View Article and Find Full Text PDF