Plant Cell Environ
June 2024
Despite the abundant evidence of impairments to plant performance and survival under hotter-drought conditions, little is known about the vulnerability of reproductive organs to climate extremes. Here, by conducting a comparative analysis between flowers and leaves, we investigated how variations in key morphophysiological traits related to carbon and water economics can explain the differential vulnerabilities to heat and drought among these functionally diverse organs. Due to their lower construction costs, despite having a higher water storage capacity, flowers were more prone to turgor loss (higher turgor loss point; Ψ) than leaves, thus evidencing a trade-off between carbon investment and drought tolerance in reproductive organs.
View Article and Find Full Text PDFThis study addresses transpiration in a tropical evergreen mountain forest in the Ecuadorian Andes from the leaf to the stand level, with emphasis on nocturnal plant-water relations. The stand level: Evapotranspiration (ET) measured over 12 months with the Eddy-Covariance (ECov) technique proved as the major share (79%) of water received from precipitation. Irrespective of the humid climate, the vegetation transpired day and night.
View Article and Find Full Text PDFSpaceborne imaging spectroscopy, also called hyperspectral remote sensing, has shown huge potential to improve current water colour retrievals and, thereby, the monitoring of inland and coastal water ecosystems. However, the quality of water colour retrievals strongly depends on successful removal of the atmospheric/surface contributions to the radiance measured by satellite sensors. Atmospheric correction (AC) algorithms are specially designed to handle these effects, but are challenged by the hundreds of narrow spectral bands obtained by hyperspectral sensors.
View Article and Find Full Text PDFConversion of tropical forests is among the primary causes of global environmental change. The loss of their important environmental services has prompted calls to integrate ecosystem services (ES) in addition to socio-economic objectives in decision-making. To test the effect of accounting for both ES and socio-economic objectives in land-use decisions, we develop a new dynamic approach to model deforestation scenarios for tropical mountain forests.
View Article and Find Full Text PDFIn tropical agriculture, the vigorously growing Bracken fern causes severe problems by invading pastures and out-competing the common pasture grasses. Due to infestation by that weed, pastures are abandoned after a few years, and as a fatal consequence, the biodiversity-rich tropical forest is progressively cleared for new grazing areas. Here we present a broad physiological comparison of the two plant species that are the main competitors on the pastures in the tropical Ecuadorian Andes, the planted forage grass Setaria sphacelata and the weed Bracken (Pteridium arachnoideum).
View Article and Find Full Text PDFIncreasing demands for livelihood resources in tropical rural areas have led to progressive clearing of biodiverse natural forests. Restoration of abandoned farmlands could counter this process. However, as aims and modes of restoration differ in their ecological and socio-economic value, the assessment of achievable ecosystem functions and benefits requires holistic investigation.
View Article and Find Full Text PDFMountain pastures dominated by the pasture grass Setaria sphacelata in the Andes of southern Ecuador are heavily infested by southern bracken (Pteridium arachnoideum), a major problem for pasture management. Field observations suggest that bracken might outcompete the grass due to its competitive strength with regard to the absorption of photosynthetically active radiation (PAR). To understand the PAR absorption potential of both species, the aims of the current paper are to (1) parameterize a radiation scheme of a two-big-leaf model by deriving structural (LAI, leaf angle parameter) and optical (leaf albedo, transmittance) plant traits for average individuals from field surveys, (2) to initialize the properly parameterized radiation scheme with realistic global irradiation conditions of the Rio San Francisco Valley in the Andes of southern Ecuador, and (3) to compare the PAR absorption capabilities of both species under typical local weather conditions.
View Article and Find Full Text PDF