Publications by authors named "Brenneman K"

Background: Artemisinin partial resistance (ART-R) has spread throughout Southeast Asia and mutations in , the molecular marker of resistance, are widely reported in East Africa. Effective assays and robust phenotypes are crucial for monitoring populations for the emergence and spread of resistance. The recently developed extended Recovery Ring-stage Survival Assay used a qPCR-based readout to reduce the labor intensiveness for phenotyping of ART-R and improved correlation with the clinical phenotype of ART-R.

View Article and Find Full Text PDF

Drug-induced kidney injury (DIKI) is of significant concern, both during drug development and in clinical practice. We report a patient-centric approach for clinical implementation of the FDA-qualified kidney safety biomarker panel, highlighting Phase 1 and 2 trials for candidate therapeutics in Pfizer's portfolio (PFE-1 and PFE-2, respectively) that induced kidney tubular injury in rat toxicity studies. Clusterin (CLU), cystatin-C (CysC), kidney injury molecule-1 (KIM-1), N-acetyl-beta-d-glucosaminidase (NAG), neutrophil gelatinase-associated lipocalin (NGAL), and osteopontin (OPN) were measured in urine samples from (i) Phase 1 healthy volunteers (HVs; n = 12) dosed with PFE-1, (ii) Phase 2 rheumatoid arthritis (RA) patients (n = 266) dosed with PFE-2, (iii) lupus patients on standard-of-care therapies (n = 121), and (iv) healthy volunteers (n = 60).

View Article and Find Full Text PDF

Background: Drug resistance in Plasmodium falciparum is a major threat to malaria control efforts. Pathogen genomic surveillance could be invaluable for monitoring current and emerging parasite drug resistance.

Methods: Data from two decades (2000-2020) of continuous molecular surveillance of P.

View Article and Find Full Text PDF

Piperaquine (PPQ) is widely used in combination with dihydroartemisinin (DHA) as a first-line treatment against malaria parasites. Multiple genetic drivers of PPQ resistance have been reported, including mutations in the () and increased copies of (). We generated a cross between a Cambodia-derived multi-drug resistant KEL1/PLA1 lineage isolate (KH004) and a drug susceptible parasite isolated in Malawi (Mal31).

View Article and Find Full Text PDF

Malaria parasites break down host haemoglobin into peptides and amino acids in the digestive vacuole for export to the parasite cytoplasm for growth: interrupting this process is central to the mode of action of several antimalarial drugs. Mutations in the chloroquine (CQ) resistance transporter, pfcrt, located in the digestive vacuole membrane, confer CQ resistance in Plasmodium falciparum, and typically also affect parasite fitness. However, the role of other parasite loci in the evolution of CQ resistance is unclear.

View Article and Find Full Text PDF
Article Synopsis
  • The session discussed new insights into the hemostatic system, particularly focusing on advances in coagulation and platelet biology, comparing traditional cascade models with newer cell-based and vascular models.
  • It highlighted the aging process of platelets and their recognition by the Ashwell-Morell receptor, leading to increased production of thrombopoietin in the liver.
  • The impact of certain therapeutic agents on thrombocytopenia was addressed, including Mylotarg's effect on megakaryocyte development and an acetyl co-A carboxylase inhibitor's role in disrupting platelet production, along with developments in gene therapy for hemophilia B and tools for predicting prothrombotic states.
View Article and Find Full Text PDF
Article Synopsis
  • Richard Carter's 2005 method, "linkage group selection", revolutionized malaria genetics by using bulk progeny pools to quickly map traits like drug resistance.
  • This method also introduced "bulk segregant" strategies, which are now popular in various microbes, including yeast and several pathogens.
  • Recent advances allow genetic crosses of human malaria parasites in humanized mice, opening up further research opportunities for mapping diverse traits in malaria.
View Article and Find Full Text PDF
Article Synopsis
  • The study investigates how different genes influence growth and nutrient use in various strains of malaria parasites under different media conditions.
  • In competition experiments, the lab-adapted strain 3D7 outperformed the recently isolated strain NHP4026 in human serum, while the opposite was true in AlbuMAX media.
  • By performing genetic crosses in humanized mice and analyzing allele frequency changes, researchers identified three specific genomic regions linked to growth differences in the two media types, highlighting a strong selection pressure on the parasites' growth traits.
View Article and Find Full Text PDF

Classical malaria parasite genetic crosses involve isolation, genotyping, and phenotyping of progeny parasites, which is time consuming and laborious. We tested a rapid alternative approach-bulk segregant analysis (BSA)-that utilizes sequencing of bulk progeny populations with and without drug selection for rapid identification of drug resistance loci. We used dihydroartemisinin (DHA) selection in two genetic crosses and investigated how synchronization, cryopreservation, and the drug selection regimen impacted BSA success.

View Article and Find Full Text PDF

Friedreich's ataxia is a rare disorder resulting from deficiency of frataxin, a mitochondrial protein implicated in the synthesis of iron-sulfur clusters. Preclinical studies in mice have shown that gene therapy is a promising approach to treat individuals with Friedreich's ataxia. However, a recent report provided evidence that AAVrh10-mediated overexpression of frataxin could lead to cardiotoxicity associated with mitochondrial dysfunction.

View Article and Find Full Text PDF

: A zymogen-like activated factor X variant (FXa) is being developed for treating acute bleeding conditions. Activated factor V is an essential cofactor to FXa for activating prothrombin to thrombin. Thrombi/emboli formation was observed microscopically in FXa toxicity studies in animals.

View Article and Find Full Text PDF

The vast majority of live attenuated typhoid vaccines are constructed from the serovar Typhi strain Ty2, which is devoid of a functioning alternative sigma factor, RpoS, due to the presence of a frameshift mutation. RpoS is a specialized sigma factor that plays an important role in the general stress response of a number of Gram-negative organisms, including . Previous studies have demonstrated that this sigma factor is necessary for survival following exposure to acid, hydrogen peroxide, nutrient-limiting conditions, and starvation.

View Article and Find Full Text PDF

Three-dimensional models of human intestinal epithelium mimic the differentiated form and function of parental tissues often not exhibited by two-dimensional monolayers and respond to in key ways that reflect in vivo infections. To further enhance the physiological relevance of three-dimensional models to more closely approximate in vivo intestinal microenvironments encountered by , we developed and validated a novel three-dimensional co-culture infection model of colonic epithelial cells and macrophages using the NASA Rotating Wall Vessel bioreactor. First, U937 cells were activated upon collagen-coated scaffolds.

View Article and Find Full Text PDF

The cytokine TWEAK and its cognate receptor Fn14 are members of the TNF/TNFR superfamily and are upregulated in tissue injury to mediate local tissue responses including inflammation and tissue remodeling. We found that in various models of kidney disease, Fn14 expression (mRNA and protein) is upregulated in the kidney. These models include: lupus nephritis mouse models (Nephrotoxic serum Transfer Nephritis and MRL.

View Article and Find Full Text PDF

Background: To be effective, orally administered live Salmonella vaccines must first survive their encounter with the low pH environment of the stomach. To enhance survival, an antacid is often given to neutralize the acidic environment of the stomach just prior to or concomitant with administration of the vaccine. One drawback of this approach, from the perspective of the clinical trial volunteer, is that the taste of a bicarbonate-based acid neutralization system can be unpleasant.

View Article and Find Full Text PDF

Researchers have iterated that the future of synthetic biology and biotechnology lies in novel consumer applications of crossing biology with engineering. However, if the new biology's future is to be sustainable, early and serious efforts must be made towards social sustainability. Therefore, the crux of new applications of synthetic biology and biotechnology is public understanding and acceptance.

View Article and Find Full Text PDF

The low pH of the stomach serves as a barrier to ingested microbes and must be overcome or bypassed when delivering live bacteria for vaccine or probiotic applications. Typically, the impact of stomach acidity on bacterial survival is evaluated in vitro, as there are no small animal models to evaluate these effects in vivo. To better understand the effect of this low pH barrier to live attenuated Salmonella vaccines, which are often very sensitive to low pH, we investigated the value of the histamine mouse model for this application.

View Article and Find Full Text PDF

Pancreatic toxicity commonly affects the endocrine or exocrine pancreas. However, it can also occur at the endocrine-exocrine interface (EEI), where the capillary network of the islet merges with the capillaries of the surrounding acinar tissue, that is, the insulo-acinar portal system. The goal of this article is to describe a novel, test article-induced pancreatic toxicity that originated at the EEI and to summarize investigations into the mechanistic basis of the injury.

View Article and Find Full Text PDF

Attenuated Salmonella vaccines can be administered orally to deliver recombinant antigens to mucosal surfaces inducing a protective immune response against a variety of targeted pathogens. A number of exciting new approaches and technologies for attenuated Salmonella vaccines have been developed recently. However, a disconnect remains between results obtained with mice in preclinical studies and results obtained in human clinical trials.

View Article and Find Full Text PDF

Background: Live, attenuated, orally-administered Salmonella strains are excellent vectors for vaccine antigens and are attractive as vaccines based on previous use of S. Typhimurium in animals. A Phase I dose escalation trial was conducted to evaluate the safety and immunogenicity of three newly constructed recombinant attenuated Salmonella enterica serovar Typhi vaccine (RASV) vectors synthesizing Streptococcus pneumoniae surface protein A (PspA).

View Article and Find Full Text PDF

Prior to initiating a phase 1 dose escalation trial of the safety and immunogenicity of live, oral, recombinant, attenuated Salmonella enterica serovar Typhi vaccine strains in human subjects, the suitability of conventional blood culture procedures to rapidly and reliably detect the organisms in human blood was investigated. Blood culture specimens, with and without added growth supplements, were inoculated with study organism concentrations ranging from approximately 300 to as few as 1 to 2 CFU/10 ml culture and processed in a Bactec 9240 fluorescent series aerobic blood culture system. All cultures seeded with >6 CFU and 93% of cultures seeded with ∼1 to 2 CFU were identified as positive for microbial growth within 44 h of incubation.

View Article and Find Full Text PDF

For Salmonella, transient exposure to gastric pH prepares invading bacteria for the stresses of host-cell interactions. To resist the effects of low pH, wild-type Salmonella enterica uses the acid tolerance response and the arginine decarboxylase acid resistance system. However, arginine decarboxylase is typically repressed under routine culture conditions, and for many live attenuated Salmonella vaccine strains, the acid tolerance response is unable to provide the necessary protection.

View Article and Find Full Text PDF

Coiled-coil domain containing 80 (Ccdc80) is a secreted protein highly enriched in mouse and human white adipose tissue (WAT) that plays an important role during adipocyte differentiation in vitro. To investigate the physiological function of Ccdc80 in energy and glucose homeostasis, we generated mice in which the gene encoding Ccdc80 was disrupted. Mice lacking Ccdc80 showed increased sensitivity to diet-induced hyperglycemia and glucose intolerance while displaying reduced glucose-stimulated insulin secretion in vivo.

View Article and Find Full Text PDF

Identification of individuals shedding Salmonella enterica serovar Typhi in stool is imperative during clinical trial safety evaluations. Recovery of live attenuated S. Typhi vaccine strains can be difficult because the mutations necessary for safety in humans often compromise survival in stringent selective enrichment media.

View Article and Find Full Text PDF

Bacillus anthracis, the causative agent of anthrax, produces a tripartite toxin composed of two enzymatically active subunits, lethal factor (LF) and edema factor (EF), which, when associated with a cell-binding component, protective antigen (PA), form lethal toxin and edema toxin, respectively. In this preliminary study, we characterized the toxin-specific antibody responses observed in 17 individuals infected with cutaneous anthrax. The majority of the toxin-specific antibody responses observed following infection were directed against LF, with immunoglobulin G (IgG) detected as early as 4 days after the onset of symptoms in contrast to the later and lower EF- and PA-specific IgG responses.

View Article and Find Full Text PDF