Publications by authors named "Brennan Simon"

The molecular mechanisms that regulate breast cancer cell (BCC) metastasis and proliferation within the leptomeninges (LM) are poorly understood, which limits the development of effective therapies. In this work, we show that BCCs in mice can invade the LM by abluminal migration along blood vessels that connect vertebral or calvarial bone marrow and meninges, bypassing the blood-brain barrier. This process is dependent on BCC engagement with vascular basement membrane laminin through expression of the neuronal pathfinding molecule integrin α6.

View Article and Find Full Text PDF

The administration of inactivated tumor cells is known to induce a potent antitumor immune response; however, the efficacy of such an approach is limited by its inability to kill tumor cells before inducing the immune responses. Unlike inactivated tumor cells, living tumor cells have the ability to track and target tumors. Here, we developed a bifunctional whole cancer cell-based therapeutic with direct tumor killing and immunostimulatory roles.

View Article and Find Full Text PDF

The majority of adult patients with acute lymphoblastic leukemia (ALL) suffer relapse, and in patients with central nervous system (CNS) metastasis, prognosis is particularly poor. We recently demonstrated a novel route of ALL CNS metastasis dependent on PI3Kδ regulation of the laminin receptor integrin α6. B-ALL cells did not, however, rely on PI3Kδ signaling for growth.

View Article and Find Full Text PDF
Article Synopsis
  • - Primary brain tumors are diverse cancers that start in the brain's central nervous system, and researchers have created various models to study these tumors for better treatment insights.
  • - Many of the potential treatments identified in preclinical studies have not worked well in clinical trials, showing a need for improved animal models to better connect lab findings to real patient outcomes.
  • - The review focuses on current glioblastoma modeling strategies and the limitations of these models, stressing the importance of developing new approaches to create effective treatments.
View Article and Find Full Text PDF

Binary expression systems like the LexA-LexAop system provide a powerful experimental tool kit to study gene and tissue function in developmental biology, neurobiology, and physiology. However, the number of well-defined LexA enhancer trap insertions remains limited. In this study, we present the molecular characterization and initial tissue expression analysis of nearly 100 novel StanEx LexA enhancer traps, derived from the index line.

View Article and Find Full Text PDF