Publications by authors named "Brenna Norton-Baker"

As genomic databases expand and artificial intelligence tools advance, there is a growing demand for efficient characterization of large numbers of proteins. To this end, here we describe a generalizable pipeline for high-throughput protein purification using small-scale expression in E. coli and an affordable liquid-handling robot.

View Article and Find Full Text PDF

Small-scale bioreactors that are affordable and accessible would be of major benefit to the research community. In previous work, an open-source, automated bioreactor system was designed to operate up to the 30 mL scale with online optical monitoring, stirring, and temperature control, and this system, dubbed Chi.Bio, is now commercially available at a cost that is typically 1-2 orders of magnitude less than commercial bioreactors.

View Article and Find Full Text PDF
Article Synopsis
  • The main protease (M) of SARS-CoV-2 is crucial for the virus's functionality and is considered a potential target for drug development, as it is only active in its reduced form.
  • When oxidized, M's activity halts but can be restored, indicating an evolutionary adaptation to oxidative environments, although the protective mechanisms haven't been fully elucidated.
  • Researchers determined the crystal structure of oxidized M, revealing a disulfide bond that affects its dimer stability and crystallization, providing insights into the protein's response to oxidative stress and its structural study conditions.*
View Article and Find Full Text PDF

Cataract, a clouding of the eye lens from protein precipitation, affects millions of people every year. The lens proteins, the crystallins, show extensive post-translational modifications (PTMs) in cataractous lenses. The most common PTMs, deamidation and oxidation, promote crystallin aggregation; however, it is not clear precisely how these PTMs contribute to crystallin insolubilization.

View Article and Find Full Text PDF

The emerging technique of mid-infrared optical coherence tomography (MIR-OCT) takes advantage of the reduced scattering of MIR light in various materials and devices, enabling tomographic imaging at deeper penetration depths. Because of challenges in MIR detection technology, the image acquisition time is, however, significantly longer than for tomographic imaging methods in the visible/near-infrared. Here we demonstrate an alternative approach to MIR tomography with high-speed imaging capabilities.

View Article and Find Full Text PDF

Ionizing radiation has dramatic effects on living organisms, causing damage to proteins, DNA, and other cellular components. γ radiation produces reactive oxygen species (ROS) that damage biological macromolecules. Protein modification due to interactions with hydroxyl radical is one of the most common deleterious effects of radiation.

View Article and Find Full Text PDF

Fixed-target serial crystallography has become an important method for the study of protein structure and dynamics at synchrotrons and X-ray free-electron lasers. However, sample homogeneity, consumption and the physical stress on samples remain major challenges for these high-throughput experiments, which depend on high-quality protein microcrystals. The batch crystallization procedures that are typically applied require time- and sample-intensive screening and optimization.

View Article and Find Full Text PDF

The highly infectious disease COVID-19 caused by the SARS-CoV-2 poses a severe threat to humanity and demands the redirection of scientific efforts and criteria to organized research projects. The international consortium seeks to provide such new approaches by gathering scientific expertise worldwide. In particular, making available viral proteins and RNAs will pave the way to understanding the SARS-CoV-2 molecular components in detail.

View Article and Find Full Text PDF
Article Synopsis
  • COVID-19, caused by SARS-CoV-2, is a severe global health crisis with no direct treatment available.
  • Researchers conducted a high-throughput x-ray crystallography screen on repurposed drug libraries targeting the virus's main protease, which is crucial for its replication.
  • They identified 37 compounds that bind to the protease and found two promising allosteric binding sites, with several compounds showing antiviral activity without toxicity in further tests.
View Article and Find Full Text PDF

Naturally occurring and recombinant protein-based materials are frequently employed for the study of fundamental biological processes and are often leveraged for applications in areas as diverse as electronics, optics, bioengineering, medicine, and even fashion. Within this context, unique structural proteins known as reflectins have recently attracted substantial attention due to their key roles in the fascinating color-changing capabilities of cephalopods and their technological potential as biophotonic and bioelectronic materials. However, progress toward understanding reflectins has been hindered by their atypical aromatic and charged residue-enriched sequences, extreme sensitivities to subtle changes in environmental conditions, and well-known propensities for aggregation.

View Article and Find Full Text PDF

Divalent metal cations can play a role in protein aggregation diseases, including cataract. Here we compare the aggregation of human γS-crystallin, a key structural protein of the eye lens, via mutagenesis, ultraviolet light damage, and the addition of metal ions. All three aggregation pathways result in globular, amorphous-looking structures that do not elongate into fibers.

View Article and Find Full Text PDF

Cephalopods possess unrivaled camouflage and signaling abilities that are enabled by their sophisticated skin, wherein multiple layers contain chromatophore pigment cells (as part of larger chromatophore organs) and different types of reflective cells called iridocytes and leucophores. The optical functionality of these cells (and thus cephalopod skin) critically relies upon subcellular structures partially composed of unusual structural proteins known as reflectins. Herein, we highlight studies that have investigated reflectins as materials within the context of color-changing coatings.

View Article and Find Full Text PDF