Publications by authors named "Brenna M Zimmer"

Hyaluronan is a versatile macromolecule capable of an exceptional range of functions from cushioning and hydration to dynamic signaling in development and disease. Because of its critical roles, hyaluronan production is regulated at multiple levels including epigenetic, transcriptional, and posttranslational control of the three hyaluronan synthase (HAS) enzymes. Precursor availability can dictate the rate and amount of hyaluronan synthesized and shed by the cells producing it.

View Article and Find Full Text PDF

Glucuronidation controls androgen levels in the prostate and the dysregulation of enzymes in this pathway is associated with castration resistant prostate cancer. UDP-glucose dehydrogenase (UGDH) produces UDP-glucuronate, the essential precursor for glucuronidation, and its expression is elevated in prostate cancer. We compared protein and metabolite levels relevant to the glucuronidation pathway in five prostate cancer patient-derived xenograft models paired with their isogenic counterparts that were selected for castration resistant (CR) recurrence.

View Article and Find Full Text PDF

Regulation of proteoglycan and glycosaminoglycan synthesis is critical throughout development, and to maintain normal adult functions in wound healing and the immune system, among others. It has become increasingly clear that these processes are also under tight metabolic control and that availability of carbohydrate and amino acid metabolite precursors has a role in the control of proteoglycan and glycosaminoglycan turnover. The enzyme uridine diphosphate (UDP)-glucose dehydrogenase (UGDH) produces UDP-glucuronate, an essential precursor for new glycosaminoglycan synthesis that is tightly controlled at multiple levels.

View Article and Find Full Text PDF

Prostate epithelial cells control the potency and availability of androgen hormones in part by inactivation and elimination. UDP-glucose dehydrogenase (UGDH) catalyzes the NAD(+)-dependent oxidation of UDP-glucose to UDP-glucuronate, an essential precursor for androgen inactivation by the prostate glucuronidation enzymes UGT2B15 and UGT2B17. UGDH expression is androgen stimulated, which increases the production of UDP-glucuronate and fuels UGT-catalyzed glucuronidation.

View Article and Find Full Text PDF