Publications by authors named "Brenes D"

Open-top light-sheet (OTLS) microscopy offers rapid 3D imaging of large optically cleared specimens. This enables nondestructive 3D pathology, which provides key advantages over conventional slide-based histology including comprehensive sampling without tissue sectioning/destruction and visualization of diagnostically important 3D structures. With 3D pathology, clinical specimens are often labeled with small-molecule stains that broadly target nucleic acids and proteins, mimicking conventional hematoxylin and eosin (H&E) dyes.

View Article and Find Full Text PDF

Objective: Early detection and treatment of cervical precancers can prevent disease progression. However, in low-resource communities with a high incidence of cervical cancer, high equipment costs and a shortage of specialists hinder preventative strategies. This manuscript presents a low-cost multiscale in vivo optical imaging system coupled with a computer-aided diagnostic system that could enable accurate, real-time diagnosis of high-grade cervical precancers.

View Article and Find Full Text PDF

Recent advances in 3D pathology offer the ability to image orders of magnitude more tissue than conventional pathology methods while also providing a volumetric context that is not achievable with 2D tissue sections, and all without requiring destructive tissue sectioning. Generating high-quality 3D pathology datasets on a consistent basis, however, is not trivial and requires careful attention to a series of details during tissue preparation, imaging and initial data processing, as well as iterative optimization of the entire process. Here, we provide an end-to-end procedure covering all aspects of a 3D pathology workflow (using light-sheet microscopy as an illustrative imaging platform) with sufficient detail to perform well-controlled preclinical and clinical studies.

View Article and Find Full Text PDF

Anal cancer incidence is significantly higher in people living with HIV as HIV increases the oncogenic potential of human papillomavirus. The incidence of anal cancer in the United States has recently increased, with diagnosis and treatment hampered by high loss-to-follow-up rates. Novel methods for the automated, real-time diagnosis of AIN 2+ could enable "see and treat" strategies, reducing loss-to-follow-up rates.

View Article and Find Full Text PDF

Recent advances in 3D pathology offer the ability to image orders-of-magnitude more tissue than conventional pathology while providing a volumetric context that is lacking with 2D tissue sections, all without requiring destructive tissue sectioning. Generating high-quality 3D pathology datasets on a consistent basis is non-trivial, requiring careful attention to many details regarding tissue preparation, imaging, and data/image processing in an iterative process. Here we provide an end-to-end protocol covering all aspects of a 3D pathology workflow (using light-sheet microscopy as an illustrative imaging platform) with sufficient detail to perform well-controlled preclinical and clinical studies.

View Article and Find Full Text PDF

Introduction: In the United States, the effectiveness of anal cancer screening programs has been limited by a lack of trained professionals proficient in high-resolution anoscopy (HRA) and a high patient lost-to-follow-up rate between diagnosis and treatment. Simplifying anal intraepithelial neoplasia grade 2 or more severe (AIN 2+) detection could radically improve the access and efficiency of anal cancer prevention. Novel optical imaging providing point-of-care diagnoses could substantially improve existing HRA and histology-based diagnosis.

View Article and Find Full Text PDF

Significance: Despite recent advances in multimodal optical imaging, oral imaging systems often do not provide real-time actionable guidance to the clinician who is making biopsy and treatment decisions.

Aim: We demonstrate a low-cost, portable active biopsy guidance system (ABGS) that uses multimodal optical imaging with deep learning to directly project cancer risk and biopsy guidance maps onto oral mucosa in real time.

Approach: Cancer risk maps are generated based on widefield autofluorescence images and projected onto the at-risk tissue using a digital light projector.

View Article and Find Full Text PDF

Cervical cancer remains a leading cause of cancer death among women in low-and middle-income countries. Globally, cervical cancer prevention programs are hampered by a lack of resources, infrastructure, and personnel. We describe a multimodal mobile colposcope (MMC) designed to diagnose precancerous cervical lesions at the point-of-care without the need for biopsy.

View Article and Find Full Text PDF

Objective: Optical imaging studies of oral premalignant lesions have shown that optical markers, including loss of autofluorescence and altered morphology of epithelial cell nuclei, are predictive of high-grade pathology. While these optical markers are consistently positive in lesions with moderate/severe dysplasia or cancer, they are positive only in a subset of lesions with mild dysplasia. This study compared the gene expression profiles of lesions with mild dysplasia (stratified by optical marker status) to lesions with severe dysplasia and without dysplasia.

View Article and Find Full Text PDF

Cervical cancer is a public health emergency in low- and middle-income countries where resource limitations hamper standard-of-care prevention strategies. The high-resolution endomicroscope (HRME) is a low-cost, point-of-care device with which care providers can image the nuclear morphology of cervical lesions. Here, we propose a deep learning framework to diagnose cervical intraepithelial neoplasia grade 2 or more severe from HRME images.

View Article and Find Full Text PDF

High-resolution microendoscopy (HRME) is a low-cost strategy to acquire images of intact tissue with subcellular resolution at frame rates ranging from 11 to 18 fps. Current HRME imaging strategies are limited by the small microendoscope field of view (∼0.5 mm); multiple images must be acquired and reliably registered to assess large regions of clinical interest.

View Article and Find Full Text PDF

We conducted a prospective evaluation of the diagnostic performance of high-resolution microendoscopy (HRME) to detect cervical intraepithelial neoplasia (CIN) in women with abnormal screening tests. Study participants underwent colposcopy, HRME and cervical biopsy. The prospective diagnostic performance of HRME using an automated morphologic image analysis algorithm was compared to that of colposcopy using histopathologic detection of CIN as the gold standard.

View Article and Find Full Text PDF

optical imaging technologies like high-resolution microendoscopy (HRME) can image nuclei of the oral epithelium. In principle, automated algorithms can then calculate nuclear features to distinguish neoplastic from benign tissue. However, images frequently contain regions without visible nuclei, due to biological and technical factors, decreasing the data available to and accuracy of image analysis algorithms.

View Article and Find Full Text PDF

Time-of-flight secondary ion mass spectrometry (TOF-SIMS) and atomic force microscopy (AFM) are employed to characterize a wedge-shaped crater eroded by a 40 keV C(60) (+) cluster ion beam on an organic thin film of 402 nm of barium arachidate (AA) multilayers prepared by the Langmuir-Blodgett (LB) technique. Sample cooling to 90 K was used to help reduce chemical damage, improve depth resolution and maintain constant erosion rate during depth profiling. The film was characterized at 90 K, 135 K, 165 K, 205 K, 265 K and 300 K.

View Article and Find Full Text PDF

Recent experimental measurements and calculations performed by molecular dynamics computer simulations indicate, for highly energetic C primary ions bombarding molecular solids, the emission of intact molecules is unique. An energy- and angle-resolved neutral mass spectrometer coupled with laser photoionization techniques was used to measure the polar angle distribution of neutral benzo[a]pyrene molecules desorbed by 20-keV [Formula: see text] primary ions and observed to peak at off-normal angles integrated over all possible emission energies. Similarly, computer simulations of 20-keV C projectiles bombarding a coarse-grained benzene system resulted in calculations of nearly identical polar angle distributions.

View Article and Find Full Text PDF

The quality of molecular depth profiles created by erosion of organic materials by cluster ion beams exhibits a strong dependence upon temperature. To elucidate the fundamental nature of this dependence, we employ the Irganox 3114/1010 organic delta-layer reference material as a model system. This delta-layer system is interrogated using a 40 keV C(60)(+) primary ion beam.

View Article and Find Full Text PDF

The angular distribution of intact organic molecules desorbed by energetic C(60) primary ions was probed both experimentally and with molecular dynamics computer simulations. For benzo[a]pyrene, the angular distribution of intact molecules is observed to peak at off-normal angles. Molecular dynamics computer simulations on a similar system show the mechanism of desorption involves fast deposition of energy followed by fluid-flow and effusive-type emission of intact molecules.

View Article and Find Full Text PDF

Molecular depth profiles of model organic thin films were performed using a 40 keV C cluster ion source in concert with TOF-SIMS. Strong-field photoionization of intact neutral molecules sputtered by 40 keV C primary ions was used to analyze changes in the chemical environment of the guanine thin films as a function of ion fluence. Direct comparison of the secondary ion and neutral components of the molecular depth profiles yields valuable information about chemical damage accumulation as well as changes in the molecular ionization probability.

View Article and Find Full Text PDF
Article Synopsis
  • The study examined how temperature affects the sputtering process of coronene, an organic molecule, when exposed to Au and C ions at temperatures of 100 K and 300 K.
  • Researchers used strong field photoionization to analyze the sputtered neutral flux, focusing on how the flight time and kinetic energy distributions of both intact and fragmented molecules changed.
  • The findings help to understand the impact of temperature on the behavior and composition of sputtered materials in ion beam experiments.
View Article and Find Full Text PDF

Molecular depth profiles of an organic thin film of guanine vapor deposited onto a Ag substrate are obtained using a 40 keV C(60) cluster ion beam in conjunction with time-of-flight secondary ion mass spectrometric (ToF-SIMS) detection. Strong-field, femtosecond photoionization of intact guanine molecules is used to probe the neutral component of the profile for direct comparison with the secondary ion component. The ability to simultaneously acquire secondary ions and photoionized neutral molecules reveals new fundamental information about the factors that influence the properties of the depth profile.

View Article and Find Full Text PDF