Publications by authors named "Brendon S Restall"

Optical imaging of metabolism can provide key information about health and disease progression in cells and tissues; however, current methods have lacked gold-standard information about histological structure. Conversely, histology and virtual histology methods have lacked metabolic contrast. Here, we present metabolic light absorption, scattering, and emission (MetaLASE) microscopy, which rapidly provides a virtual histology and optical metabolic readout simultaneously.

View Article and Find Full Text PDF

In recent years, the emergence of a variety of novel optical microscopy techniques has enabled the generation of virtual optical stains of unlabeled tissue specimens, which have the potential to transform existing clinical histopathology workflows. In this work, we present a simultaneous deep ultraviolet transmission and scattering microscopy system that can produce virtual histology images that show concordance to conventional gold-standard histological processing techniques. The results of this work demonstrate the system's diagnostic potential for characterizing unlabeled thin tissue sections and streamlining histological workflows.

View Article and Find Full Text PDF

The goal of oncologic surgeries is complete tumor resection, yet positive margins are frequently found postoperatively using gold standard H&E-stained histology methods. Frozen section analysis is sometimes performed for rapid intraoperative margin evaluation, albeit with known inaccuracies. Here, we introduce a label-free histological imaging method based on an ultraviolet photoacoustic remote sensing and scattering microscope, combined with unsupervised deep learning using a cycle-consistent generative adversarial network for realistic virtual staining.

View Article and Find Full Text PDF

There is an unmet need for fast virtual histology technologies that exhibit histological realism and can scan large sections of fresh tissue within intraoperative time-frames. Ultraviolet photoacoustic remote sensing microscopy (UV-PARS) is an emerging imaging modality capable of producing virtual histology images that show good concordance to conventional histology stains. However, a UV-PARS scanning system that can perform rapid intraoperative imaging over mm-scale fields-of-view at fine resolution (<500 nm) has yet to be demonstrated.

View Article and Find Full Text PDF

A rapid scanning microscopy method for hematoxylin and eosin (H&E) like images is sought after for interoperative diagnosis of solid tumor margins. The rapid observation and diagnosis of histological samples can greatly lower surgical risk and improve patient outcomes from solid tumor resection surgeries. Photoacoustic remote sensing (PARS) has recently been demonstrated to provide images of virtual H&E stains with excellent concordance with true H&E staining of formalin-fixed, paraffin embedded tissues.

View Article and Find Full Text PDF
Article Synopsis
  • Current methods for label-free virtual histopathology have not fully achieved realistic results, presenting a significant challenge in the field.
  • The study introduces a novel technique using ultraviolet scattering-augmented photoacoustic microscopy to create high-resolution virtual histology images of unstained human breast tissue.
  • By integrating a colormap-matching algorithm, the resulting virtual H&E images closely match traditional stained sections, indicating potential for improved diagnostic applications.
View Article and Find Full Text PDF

Significance: Complementary absorption and fluorescence contrast could prove useful for a wide range of biomedical applications. However, current absorption-based photoacoustic microscopy systems require the ultrasound transducers to physically touch the samples, thereby increasing contamination and limiting strong optical focusing in reflection mode.

Aim: We sought to develop an all-optical system for imaging cells and tissues using the three combined imaging modalities: photoacoustic remote sensing (PARS), epifluorescence, and confocal laser scanning microscopy (CLSM).

View Article and Find Full Text PDF

Photoacoustic remote sensing (PARS) is a novel all-optical imaging modality that allows for non-contact detection of initial photoacoustic pressures. Using 266-nm excitation pulses, ultraviolet PARS (UV-PARS) has previously demonstrated imaging contrast for cell nuclei in histological samples with <400 resolution. In prior PARS-based imaging schemes, the signal amplitude at an interrogation point was determined by the maximum deflection from the DC scattering signal in response to a pulsed excitation.

View Article and Find Full Text PDF

Hematoxylin and eosin (H&E) staining is the gold standard for most histopathological diagnostics but requires lengthy processing times not suitable for point-of-care diagnosis. Here we demonstrate a 266-nm excitation ultraviolet photoacoustic remote sensing (UV-PARS) and 1310-nm microscopy system capable of virtual H&E 3D imaging of tissues. Virtual hematoxylin staining of nuclei is achieved with UV-PARS, while virtual eosin staining is achieved using the already implemented interrogation laser from UV-PARS for scattering contrast.

View Article and Find Full Text PDF

Histopathology of lipid-rich tissues is often a difficult endeavor, owing to the limited tissue processing workflows that can appropriately preserve tissue while keeping fatty deposits intact. Here, we present the first usage of near-infrared (NIR) photoacoustic remote sensing (PARS) to achieve imaging contrast from lipids without the need for exogenous stains or labels. In our system, the facile production of 1225 nm excitation pulses is achieved by the stimulated Raman scattering of a 1064 nm source propagating through an optical fiber.

View Article and Find Full Text PDF