Publications by authors named "Brendon Ricart"

The use of continuous manufacturing has been increasing within the pharmaceutical industry over the last few years. Continuous direct compression has been the focus of publications on the topic to date. The use of wet granulation can improve segregation resistance, uniformity, enhance density, and flow properties for improved tabletability, or improve stability of products that cannot be manufactured by using a direction compression process.

View Article and Find Full Text PDF

In this study, the influence of key process variables (screw speed, throughput and liquid to solid (L/S) ratio) of a continuous twin screw wet granulation (TSWG) was investigated using a central composite face-centered (CCF) experimental design method. Regression models were developed to predict the process responses (motor torque, granule residence time), granule properties (size distribution, volume average diameter, yield, relative width, flowability) and tablet properties (tensile strength). The effects of the three key process variables were analyzed via contour and interaction plots.

View Article and Find Full Text PDF

Dendritic cells (DCs) migrate from sites of inflammation to secondary lymphoid organs where they initiate the adaptive immune response. Although motility is essential to DC function, the mechanisms by which they migrate are not fully understood. We incorporated micropost array detectors into a microfluidic gradient generator to develop what we consider to be a novel method for probing low magnitude traction forces during directional migration.

View Article and Find Full Text PDF

Under normal conditions the immune system has limited access to the brain; however, during toxoplasmic encephalitis (TE), large numbers of T cells and APCs accumulate within this site. A combination of real time imaging, transgenic reporter mice, and recombinant parasites allowed a comprehensive analysis of CD11c+ cells during TE. These studies reveal that the CNS CD11c+ cells consist of a mixture of microglia and dendritic cells (DCs) with distinct behavior associated with their ability to interact with parasites or effector T cells.

View Article and Find Full Text PDF

Dendritic cells (DCs) are professional APCs that reside in peripheral tissues and survey the body for pathogens. Upon activation by inflammatory signals, DCs undergo a maturation process and migrate to lymphoid organs, where they present pathogen-derived Ags to T cells. DC migration depends on tight regulation of the actin cytoskeleton to permit rapid adaptation to environmental cues.

View Article and Find Full Text PDF

Dendritic cells (DCs) respond to chemotactic signals to migrate from sites of infection to secondary lymphoid organs where they initiate the adaptive immune response. The key chemokines directing their migration are CCL19, CCL21, and CXCL12, but how signals from these chemokines are integrated by migrating cells is poorly understood. Using a microfluidic device, we presented single and competing chemokine gradients to murine bone-marrow derived DCs in a controlled, time-invariant microenvironment.

View Article and Find Full Text PDF

Neutrophil adhesion to the vasculature and chemotaxis within tissues play critical roles in the inflammatory response to injury and pathogens. Unregulated neutrophil activity has been implicated in the progression of numerous chronic and acute diseases such as rheumatoid arthritis, asthma, and sepsis. Cell migration of anchorage-dependent cells is known to depend on both chemical and mechanical interactions.

View Article and Find Full Text PDF

Polymer vesicles, or polymersomes, are promising candidates for applications in drug delivery and tissue imaging. While a vast variety of polymers have been explored for their ability to assemble into polymersomes, relatively little research on the functionalization of these polymers has been reported. We present here a novel route for the synthesis of poly(caprolactone)-b-poly(ethylene glycol) (PCL-b-PEG) diblock copolymers that allows for the insertion of functional groups at the block junctions and the assembly of functional membranes.

View Article and Find Full Text PDF