Event-related potentials (ERPs) can reveal brain activity elicited by external stimuli. Innovative methods to decode ERPs could enhance the accuracy of brain-computer interface (BCI) technology and promote the understanding of cognitive processes. This paper proposes a novel Multi-Scale Pyramid Squeeze Attention Similarity Optimization Classification Neural Network (MS-PSA-SOC) for ERP Detection.
View Article and Find Full Text PDFIn steady-state visual evoked potential (SSVEP)-based brain-computer interfaces (BCIs), various spatial filtering methods based on individual calibration data have been proposed to alleviate the interference of spontaneous activities in SSVEP signals for enhancing the SSVEP detection performance. However, the necessary calibration procedures take time, cause visual fatigue and reduce usability. For the calibration-free scenario, we propose a cross-subject frequency identification method based on transfer superimposed theory for SSVEP frequency decoding.
View Article and Find Full Text PDFThe use of Brain-Computer Interfaces (BCI) as rehabilitation tools for chronically ill neurological patients has become more widespread. BCIs combined with other techniques allow the user to restore neurological function by inducing neuroplasticity through real-time detection of motor-imagery (MI) as patients perform therapy tasks. Twenty-five stroke patients with gait disability were recruited for this study.
View Article and Find Full Text PDFObjective: Clinical assessment of consciousness relies on behavioural assessments, which have several limitations. Hence, disorder of consciousness (DOC) patients are often misdiagnosed. In this work, we aimed to compare the repetitive assessment of consciousness performed with a clinical behavioural and a Brain-Computer Interface (BCI) approach.
View Article and Find Full Text PDFBrain Comput Interfaces (Abingdon)
February 2022
The Eighth International Brain-Computer Interface (BCI) Meeting was held June 7-9th, 2021 in a virtual format. The conference continued the BCI Meeting series' interactive nature with 21 workshops covering topics in BCI (also called brain-machine interface) research. As in the past, workshops covered the breadth of topics in BCI.
View Article and Find Full Text PDFJ Clin Neurophysiol
January 2022
Disorders of consciousness include coma, unresponsive wakefulness syndrome (also known as vegetative state), and minimally conscious state. Neurobehavioral scales such as coma recovery scale-revised are the gold standard for disorder of consciousness assessment. Brain-computer interfaces have been emerging as an alternative tool for these patients.
View Article and Find Full Text PDFIntroduction: Numerous recent publications have explored Brain Computer Interfaces (BCI) systems as rehabilitation tools to help subacute and chronic stroke patients recover upper extremity movement. Recent work has shown that BCI therapy can lead to better outcomes than conventional therapy. BCI combined with other techniques such as Functional Electrical Stimulation (FES) and Virtual Reality (VR) allows to the user restore the neurological function by inducing the neural plasticity through improved real-time detection of motor imagery (MI) as patients perform therapy tasks.
View Article and Find Full Text PDFIntroduction: Recent studies explored promising new quantitative methods to analyze electroencephalography (EEG) signals. This paper analyzes the correlation of two EEG parameters, Brain Symmetry Index (BSI) and Laterality Coefficient (LC), with established functional scales for the stroke assessment.
Methods: Thirty-two healthy subjects and thirty-six stroke patients with upper extremity hemiparesis were recruited for this study.
Persons diagnosed with disorders of consciousness (DOC) typically suffer from motor and cognitive disabilities. Recent research has shown that non-invasive brain-computer interface (BCI) technology could help assess these patients' cognitive functions and command following abilities. 20 DOC patients participated in the study and performed 10 vibro-tactile P300 BCI sessions over 10 days with 8-12 runs each day.
View Article and Find Full Text PDFBrain-computer interfaces (BCIs) directly measure brain activity with no physical movement and translate the neural signals into messages. BCIs that employ the P300 event-related brain potential often have used the visual modality. The end user is presented with flashing stimuli that indicate selections for communication, control, or both.
View Article and Find Full Text PDFMany studies reported that ERP-based BCIs can provide communication for some people with amyotrophic lateral sclerosis (ALS). ERP-based BCIs often present characters within a matrix that occupies the center of the visual field. However, several studies have identified some concerns with the matrix-based approach.
View Article and Find Full Text PDFPersons diagnosed with disorders of consciousness (DOC) typically suffer from motor disablities, and thus assessing their spared cognitive abilities can be difficult. Recent research from several groups has shown that non-invasive brain-computer interface (BCI) technology can provide assessments of these patients' cognitive function that can supplement information provided through conventional behavioral assessment methods. In rare cases, BCIs may provide a binary communication mechanism.
View Article and Find Full Text PDFConventional therapies do not provide paralyzed patients with closed-loop sensorimotor integration for motor rehabilitation. This work presents the recoveriX system, a hardware and software platform that combines a motor imagery (MI)-based brain-computer interface (BCI), functional electrical stimulation (FES), and visual feedback technologies for a complete sensorimotor closed-loop therapy system for poststroke rehabilitation. The proposed system was tested on two chronic stroke patients in a clinical environment.
View Article and Find Full Text PDFIn this experiment, we demonstrate a suite of hybrid Brain-Computer Interface (BCI)-based paradigms that are designed for two applications: assessing the level of consciousness of people unable to provide motor response and, in a second stage, establishing a communication channel for these people that enables them to answer questions with either 'yes' or 'no'. The suite of paradigms is designed to test basic responses in the first step and to continue to more comprehensive tasks if the first tests are successful. The latter tasks require more cognitive functions, but they could provide communication, which is not possible with the basic tests.
View Article and Find Full Text PDFMany patients with locked-in syndrome (LIS) or complete locked-in syndrome (CLIS) also need brain-computer interface (BCI) platforms that do not rely on visual stimuli and are easy to use. We investigate command following and communication functions of mindBEAGLE with 9 LIS, 3 CLIS patients and three healthy controls. This tests were done with vibro-tactile stimulation with 2 or 3 stimulators (VT2 and VT3 mode) and with motor imagery (MI) paradigms.
View Article and Find Full Text PDFIEEE Trans Neural Syst Rehabil Eng
July 2017
Background: motor imagery (MI) is a mental representation of motor behavior. The MI-based brain computer interfaces (BCIs) can provide communication for the physically impaired. The performance of MI-based BCI mainly depends on the subject's ability to self-modulate electroencephalogram signals.
View Article and Find Full Text PDFConventional therapies do not provide paralyzed patients with closed-loop sensorimotor integration for motor rehabilitation. Paired associative stimulation (PAS) uses brain-computer interface (BCI) technology to monitor patients' movement imagery in real-time, and utilizes the information to control functional electrical stimulation (FES) and bar feedback for complete sensorimotor closed loop. To realize this approach, we introduce the recoveriX system, a hardware and software platform for PAS.
View Article and Find Full Text PDFSeveral studies have explored brain computer interface (BCI) systems based on auditory stimuli, which could help patients with visual impairments. Usability and user satisfaction are important considerations in any BCI. Although background music can influence emotion and performance in other task environments, and many users may wish to listen to music while using a BCI, auditory, and other BCIs are typically studied without background music.
View Article and Find Full Text PDFRecent research has shown that a new face paradigm is superior to the conventional "flash only" approach that has dominated P300 brain-computer interfaces (BCIs) for over 20 years. However, these face paradigms did not study the repetition effects and the stability of evoked event related potentials (ERPs), which would decrease the performance of P300 BCI. In this paper, we explored whether a new "multi-faces (MF)" approach would yield more distinct ERPs than the conventional "single face (SF)" approach.
View Article and Find Full Text PDFBackground: P300 and steady-state visual evoked potential (SSVEP) approaches have been widely used for brain-computer interface (BCI) systems. However, neither of these approaches can work for all subjects. Some groups have reported that a hybrid BCI that combines two or more approaches might provide BCI functionality to more users.
View Article and Find Full Text PDFBrain-Computer Interface (BCI) research and (future) applications raise important ethical issues that need to be addressed to promote societal acceptance and adequate policies. Here we report on a survey we conducted among 145 BCI researchers at the 4 International BCI conference, which took place in May-June 2010 in Asilomar, California. We assessed respondents' opinions about a number of topics.
View Article and Find Full Text PDFBackground: One of the most common types of brain-computer interfaces (BCIs) is called a P300 BCI, since it relies on the P300 and other event-related potentials (ERPs). In the canonical P300 BCI approach, items on a monitor flash briefly to elicit the necessary ERPs. Very recent work has shown that this approach may yield lower performance than alternate paradigms in which the items do not flash but instead change in other ways, such as moving, changing colour or changing to characters overlaid with faces.
View Article and Find Full Text PDFBrain-computer interfaces (BCI) are communication systems that allow people to send messages or commands without movement. BCIs rely on different types of signals in the electroencephalogram (EEG), typically P300s, steady-state visually evoked potentials (SSVEP), or event-related desynchronization. Early BCI systems were often evaluated with a selected group of subjects.
View Article and Find Full Text PDFA brain-computer interface (BCI) enables communication without movement based on brain signals measured with electroencephalography (EEG). BCIs usually rely on one of three types of signals: the P300 and other components of the event-related potential (ERP), steady state visual evoked potential (SSVEP), or event related desynchronization (ERD). Although P300 BCIs were introduced over twenty years ago, the past few years have seen a strong increase in P300 BCI research.
View Article and Find Full Text PDF