Publications by authors named "Brendan T O' Kennedy"

The oxidative stability of various oils (sunflower, camelina and fish) and 20% oil-in-water (O/W) emulsions, were examined. The mean particle size decreased from 1179 to 325 nm as sodium caseinate (emulsifier) concentration was increased from 0.25% to 3% in O/W emulsions (P<0.

View Article and Find Full Text PDF

Oil-in-water (O/W) emulsions were prepared using different concentrations of camelina or sunflower oil. Sodium caseinate was used as the emulsifier and dried glucose syrup as the wall material. Emulsions were subsequently spray dried to yield high-fat powders (71.

View Article and Find Full Text PDF

This study examined the effectiveness of fat and water soluble antioxidants on the oxidative stability of omega (ω)-3 rich table spreads, produced using novel multiple emulsion technology. Table spreads were produced by dispersing an oil-in-water (O/W) emulsion (500 g/kg 85 camelina/15 fish oil blend) in a hardstock/rapeseed oil blend, using sodium caseinate and polyglycerol polyricinoleate as emulsifiers. The O/W and oil-in-water-in-oil (O/W/O) emulsions contained either a water soluble antioxidant (green tea extract [GTE]), an oil soluble antioxidant (α-Tocopherol), or both.

View Article and Find Full Text PDF

The formation of Cu-alginate complexes and the impact of free or bound copper on the oxidative stability of model water/oil mixtures containing edible sunflower or corn oil were examined. Equilibrium dialysis showed that copper binding capacity of alginate increased proportionally with copper concentration and the binding was rapid. The results indicated that 25mM CuCl was necessary in obtaining beads of spherical shape and adequate mechanical strength (0.

View Article and Find Full Text PDF

The ability of alphas1/beta-casein and micellar casein to protect whey proteins from heat-induced aggregation/precipitation reactions and therefore control their functional behavior was examined. Complete suppression (>99%) of heat-induced aggregation of 0.5% (w/w) whey protein isolate (pH 6.

View Article and Find Full Text PDF

The role of the free sulfhydryl group of beta-lactoglobulin in the formation of a stable non-native monomer during heat-treatment of beta-lactoglobulin solutions was investigated. Two concomitant events occurred at the earlier stage of heating: unfolding of native globular monomer and intramolecular sulfhydryl/disulfide exchange reaction. Thus, two denatured monomeric species were formed: a non-native monomer with exposed Cys-121 (Mcys121) which became reversible after cooling, and a stable non-native monomer with exposed Cys-119 (Mcys119) which exhibited both a larger hydrodynamic conformation than native monomer and low solubility at pH 4.

View Article and Find Full Text PDF