Publications by authors named "Brendan S Talwar"

As on land, oceans exhibit high temporal and spatial temperature variation. This "ocean weather" contributes to the physiological and ecological processes that ultimately determine the patterns of species distribution and abundance, yet is often unrecognized, especially in tropical oceans. Here, we tested the paradigm of temperature stability in shallow waters (<12.

View Article and Find Full Text PDF

Per- and polyfluoroalkyl substances (PFAS) enter the marine food web, accumulate in organisms, and potentially have adverse effects on predators and consumers of seafood. However, evaluations of PFAS in meso-to-apex predators, like sharks, are scarce. This study investigated PFAS occurrence in five shark species from two marine ecosystems with contrasting relative human population densities, the New York Bight (NYB) and the coastal waters of The Bahamas archipelago.

View Article and Find Full Text PDF

The pelagic zone of the ocean can be a challenging environment in which to conduct research and as a result we lack the robust baseline abundance and diversity data, compared to what is available in more accessible coastal habitats, to be able to track changes or stressors to the biota in this environment. Many large-scale fisheries target pelagic fish, and much of the information available on these species is based on fisheries-dependent data that may be biased towards hotspots and commercially valuable fishes. Here, a long-term video and visual fish survey was conducted on two subsurface moored fish aggregating devices (FADs) in the pelagic waters of the central Bahamas to determine the feasibility of using moored pelagic FADs as tools for collecting fish abundance and diversity data.

View Article and Find Full Text PDF

Near-future climate change projections predict an increase in sea surface temperature that is expected to have significant and rapid effects on marine ectotherms, potentially affecting a number of critical life processes. Some habitats also undergo more thermal variability than others, and the inhabitants therefore must be more tolerant to acute periods of extreme temperatures. Mitigation of these outcomes may occur through acclimation, plasticity or adaptation, although the rate and extent of a species' ability to adjust to warmer temperatures is largely unknown, specifically as it pertains to effects on various performance metrics in fishes that inhabit multiple habitats throughout ontogenetic stages.

View Article and Find Full Text PDF

Understanding the factors shaping patterns of ecological resilience is critical for mitigating the loss of global biodiversity. Throughout aquatic environments, highly mobile predators are thought to serve as important vectors of energy between ecosystems thereby promoting stability and resilience. However, the role these predators play in connecting food webs and promoting energy flow remains poorly understood in most contexts.

View Article and Find Full Text PDF

Overfishing is the most significant threat facing sharks and rays. Given the growth in consumption of seafood, combined with the compounding effects of habitat loss, climate change, and pollution, there is a need to identify recovery paths, particularly in poorly managed and poorly monitored fisheries. Here, we document conservation through fisheries management success for 11 coastal sharks in US waters by comparing population trends through a Bayesian state-space model before and after the implementation of the 1993 Fisheries Management Plan for Sharks.

View Article and Find Full Text PDF

The isotopic composition of tooth-bound collagen has long been used to reconstruct dietary patterns of animals in extant and palaeoecological systems. For sharks that replace teeth rapidly in a conveyor-like system, stable isotopes of tooth collagen (δ C & δ N ) are poorly understood and lacking in ecological context relative to other non-lethally sampled tissues. This tissue holds promise, because shark jaws may preserve isotopic chronologies from which to infer individual-level ecological patterns across a range of temporal resolutions.

View Article and Find Full Text PDF

Animal dietary information provides the foundation for understanding trophic relationships, which is essential for ecosystem management. Yet, in marine systems, high-resolution diet reconstruction tools are currently under-developed. This is particularly pertinent for large marine vertebrates, for which direct foraging behaviour is difficult or impossible to observe and, due to their conservation status, the collection of stomach contents at adequate sample sizes is frequently impossible.

View Article and Find Full Text PDF

Prior to the Deepwater Horizon (DWH) oil spill, little research effort was focused on studying deep-sea sharks in the Gulf of Mexico (GoM). While the biology of these fishes remains virtually unknown, they are routinely captured in commercial fisheries as bycatch. In the absence of basic biological data, and with the probability of post-release survival unknown for most species, effective management plans cannot be formulated, making populations highly susceptible to overfishing.

View Article and Find Full Text PDF

Some shark populations face declines owing to targeted capture and by-catch in longline fisheries. Exercise intensity during longline capture and physiological status may be associated, which could inform management strategies aimed at reducing the impacts of longline capture on sharks. The purpose of this study was to characterize relationships between exercise intensity and physiological status of longline-captured nurse sharks () and Caribbean reef sharks ().

View Article and Find Full Text PDF