Philos Trans R Soc Lond B Biol Sci
July 2023
Populations can adapt to novel selection pressures through dramatic frequency changes in a few genes of large effect or subtle shifts in many genes of small effect. The latter (polygenic adaptation) is expected to be the primary mode of evolution for many life-history traits but tends to be more difficult to detect than changes in genes of large effect. Atlantic cod () were subjected to intense fishing pressure over the twentieth century, leading to abundance crashes and a phenotypic shift toward earlier maturation across many populations.
View Article and Find Full Text PDFUnderstanding the evolutionary consequences of anthropogenic change is imperative for estimating long-term species resilience. While contemporary genomic data can provide us with important insights into recent demographic histories, investigating past change using present genomic data alone has limitations. In comparison, temporal genomics studies, defined herein as those that incorporate time series genomic data, utilize museum collections and repeated field sampling to directly examine evolutionary change.
View Article and Find Full Text PDFUnderstanding recent population trends is critical to quantifying species vulnerability and implementing effective management strategies. To evaluate the accuracy of genomic methods for quantifying recent declines (beginning <120 generations ago), we simulated genomic data using forward-time methods (SLiM) coupled with coalescent simulations (msprime) under a number of demographic scenarios. We evaluated both site frequency spectrum (SFS)-based methods (momi2, Stairway Plot) and methods that employ linkage disequilibrium information (NeEstimator, GONE) with a range of sampling schemes (contemporary-only samples, sampling two time points, and serial sampling) and data types (RAD-like data and whole-genome sequencing).
View Article and Find Full Text PDFNon-native (invasive) species offer a unique opportunity to study the geographical distribution and range limits of species, wherein the evolutionary change driven by interspecific interactions between native and non-native closely related species is a key component. The red-eared slider turtle, Trachemys scripta elegans (TSE), has been introduced and successfully established worldwide. It can coexist with its native congeners T.
View Article and Find Full Text PDFBackground: Rapid anthropogenic climate change will require species to adapt to shifting environmental conditions, with successful adaptation dependent upon current patterns of genetic variation. While landscape genomic approaches allow for exploration of local adaptation in non-model systems, most landscape genomics studies of adaptive capacity are limited to exploratory identification of potentially important functional genes, often without a priori expectations as to the gene functions that may be most important for climate change responses. In this study, we integrated targeted sequencing of genes of known function and genotyping of single-nucleotide polymorphisms to examine spatial, environmental, and species-specific patterns of potential local adaptation in two co-occuring turtle species: the Blanding's turtle (Emydoidea blandingii) and the snapping turtle (Chelydra serpentina).
View Article and Find Full Text PDFAdaptation to environmental change requires that populations harbor the necessary genetic variation to respond to selection. However, dispersal-limited species with fragmented populations and reduced genetic diversity may lack this variation and are at an increased risk of local extinction. In freshwater fish species, environmental change in the form of increased stream temperatures places many cold-water species at-risk.
View Article and Find Full Text PDFResearchers studying nonmodel organisms have an increasing number of methods available for generating genomic data. However, the applicability of different methods across species, as well as the effect of reference genome choice on population genomic inference, remain difficult to predict in many cases. We evaluated the impact of data type (whole-genome vs.
View Article and Find Full Text PDFMitochondrial DNA A DNA Mapp Seq Anal
July 2020
Coral reefs are highly threatened ecosystems, yet there are numerous challenges in conducting inventories of their vanishing biodiversity, partly because many taxa remain difficult to detect and describe. Genetic species delimitation methods provide a standardized means for taxonomic classification including of cryptic, rare, or elusive groups, but results can vary by analytical method and genetic marker. In this study, a combination of morphological and genetic identification methods was used to estimate species richness and identify taxonomic units in true crabs (Infraorder Brachyura; n = 200) from coral reefs of Palmyra Atoll, Central Pacific.
View Article and Find Full Text PDFEnvironmental change can expose populations to unfamiliar stressors, and maladaptive responses to those stressors may result in population declines or extirpation. Although gene flow is classically viewed as a cause of maladaptation, small and isolated populations experiencing high levels of drift and little gene flow may be constrained in their evolutionary response to environmental change. We provide a case study using the model Trinidadian guppy system that illustrates the importance of considering gene flow and genetic drift when predicting (mal)adaptive response to acute stress.
View Article and Find Full Text PDFFor many species, climate oscillations drove cycles of population contraction during cool glacial periods followed by expansion during interglacials. Some groups, however, show evidence of uniform and synchronous expansion, while others display differences in the timing and extent of demographic change. We compared demographic histories inferred from genetic data across marine turtle species to identify responses to postglacial warming shared across taxa and to examine drivers of past demographic change at the global scale.
View Article and Find Full Text PDFExpanding the scope of landscape genetics beyond the level of single species can help to reveal how species traits influence responses to environmental change. Multispecies studies are particularly valuable in highly threatened taxa, such as turtles, in which the impacts of anthropogenic change are strongly influenced by interspecific differences in life history strategies, habitat preferences and mobility. We sampled approximately 1500 individuals of three co-occurring turtle species across a gradient of habitat change (including varying loss of wetlands and agricultural conversion of upland habitats) in the Midwestern USA.
View Article and Find Full Text PDFCharacterizing how frequently, and at what life stages and spatial scales, dispersal occurs can be difficult, especially for species with cryptic juvenile periods and long reproductive life spans. Using a combination of mark-recapture information, microsatellite genetic data, and demographic simulations, we characterize natal and breeding dispersal patterns in the long-lived, slow-maturing, and endangered Blanding's turtle (Emydoidea blandingii), focusing on nesting females. We captured and genotyped 310 individual Blanding's turtles (including 220 nesting females) in a central Wisconsin population from 2010 to 2013, with additional information on movements among 3 focal nesting areas within this population available from carapace-marking conducted from 2001 to 2009.
View Article and Find Full Text PDFRestriction-enzyme-based sequencing methods enable the genotyping of thousands of single nucleotide polymorphism (SNP) loci in nonmodel organisms. However, in contrast to traditional genetic markers, genotyping error rates in SNPs derived from restriction-enzyme-based methods remain largely unknown. Here, we estimated genotyping error rates in SNPs genotyped with double digest RAD sequencing from Mendelian incompatibilities in known mother-offspring dyads of Hoffman's two-toed sloth (Choloepus hoffmanni) across a range of coverage and sequence quality criteria, for both reference-aligned and de novo-assembled data sets.
View Article and Find Full Text PDFIn response to our review of the use of genetic bottleneck tests in the conservation literature (Peery et al. 2012,Molecular Ecology, 21, 3403–3418), Hoban et al. (2013, Molecular Ecology, in press) conducted population genetic simulations to show that the statistical power of genetic bottleneck tests can be increased substantially by sampling large numbers of microsatellite loci, as they suggest is now possible in the age of genomics.
View Article and Find Full Text PDFPhylogenetic relationships and taxonomy of the short-necked turtles of the genera Elseya, Myuchelys, and Emydura in Australia and New Guinea have long been debated as a result of conflicting hypotheses supported by different data sets and phylogenetic analyses. To resolve this contentious issue, we analyzed sequences from two mitochondrial genes (cytochrome b and ND4) and one nuclear intron gene (R35) from all species of the genera Elseya, Myuchelys, Emydura, and their relatives. Phylogenetic analyses using three methods (maximum parsimony, maximum likelihood, and Bayesian inference) produce a single, well resolved, and strongly corroborated hypothesis, which provides support for the three genera, with the exception that the genus Myuchelys is paraphyletic - Myuchelys purvisi is the sister taxon to the remaining Elseya, Myuchelys and Emydura.
View Article and Find Full Text PDFThe identification of population bottlenecks is critical in conservation because populations that have experienced significant reductions in abundance are subject to a variety of genetic and demographic processes that can hasten extinction. Genetic bottleneck tests constitute an appealing and popular approach for determining if a population decline has occurred because they only require sampling at a single point in time, yet reflect demographic history over multiple generations. However, a review of the published literature indicates that, as typically applied, microsatellite-based bottleneck tests often do not detect bottlenecks in vertebrate populations known to have experienced declines.
View Article and Find Full Text PDFDNA barcoding is a global initiative that provides a standardized and efficient tool to catalogue and inventory biodiversity, with significant conservation applications. Despite progress across taxonomic realms, globally threatened marine turtles remain underrepresented in this effort. To obtain DNA barcodes of marine turtles, we sequenced a segment of the cytochrome c oxidase subunit I (COI) gene from all seven species in the Atlantic and Pacific Ocean basins (815 bp; n = 80).
View Article and Find Full Text PDFObjective: Patients with diabetes often have dyslipidemia and increased postprandial lipidmia. Induction of diabetes in LDL receptor (Ldlr(-/-)) knockout mice also leads to marked dyslipidemia. The reasons for this are unclear.
View Article and Find Full Text PDFHepatic steatosis is often associated with insulin resistance and obesity and can lead to steatohepatitis and cirrhosis. In this study, we have demonstrated that hormone-sensitive lipase (HSL) and adipose triglyceride lipase (ATGL), two enzymes critical for lipolysis in adipose tissues, also contribute to lipolysis in the liver and can mobilize hepatic triglycerides in vivo and in vitro. Adenoviral overexpression of HSL and/or ATGL reduced liver triglycerides by 40-60% in both ob/ob mice and mice with high fat diet-induced obesity.
View Article and Find Full Text PDF