Publications by authors named "Brendan McCracken"

Background: Blood flow to the brain is a critical physiological function and is useful to monitor in critical care settings. Despite that, a surrogate is most likely measured instead of actual blood flow. Such surrogates include velocity measurements in the carotid artery and systemic blood pressure, even though true blood flow can actually be obtained using MRI and other modalities.

View Article and Find Full Text PDF

Background: Recent studies describe an emerging role for percutaneous left ventricular assist devices such as Impella CP® as rescue therapy for refractory cardiac arrest. We hypothesized that the addition of mechanical chest compressions to percutaneous left ventricular assist device assisted CPR would improve hemodynamics by compressing the right ventricle and augmenting pulmonary blood flow and left ventricular filling. We performed a pilot study to test this hypothesis using a swine model of prolonged cardiac arrest.

View Article and Find Full Text PDF

Background: It remains unclear if percutaneous left ventricular assist device (pLVAD) reduces post-cardiac arrest myocardial dysfunction.

Methods: This is a prespecified analysis of a subset of swine that achieved return of spontaneous circulation (ROSC) in a study comparing pLVAD, transient aortic occlusion (AO), or both during cardiopulmonary resuscitation (CPR). Devices were initiated after 24 minutes of ventricular fibrillation cardiac arrest (8 min no-flow and 16 min mechanical CPR).

View Article and Find Full Text PDF

Aim: To evaluate coagulofibrinolytic abnormalities and the effects of ART-123 (recombinant human thrombomodulin alpha) in a porcine model of cardiac arrest and prolonged cardiopulmonary resuscitation (CA/CPR).

Methods: Fifteen pigs ( = 5 per group) underwent 8 minutes of no-flow CA followed by 50 minutes of mechanical CPR, while 2 pigs underwent sham arrest. CA/CPR animals were randomized to receive saline or 1 mg/kg ART-123 pre-arrest (5 minutes prior to ventricular fibrillation) or post-arrest (2 minutes after initiation of CPR).

View Article and Find Full Text PDF

The purpose of this study was to assess the quality of clinical brain imaging in healthy subjects and patients on an FDA-approved commercial 0.55 T MRI scanner, and to provide information about the feasibility of using this scanner in a clinical workflow. In this IRB-approved study, brain examinations on the scanner were prospectively performed in 10 healthy subjects (February-April 2022) and retrospectively derived from 44 patients (February-July 2022).

View Article and Find Full Text PDF

Aim: To investigate the effect of tandem use of transient balloon occlusion of the descending aorta (AO) and percutaneous left ventricular assist device (pl-VAD) during cardiopulmonary resuscitation in a large animal model of prolonged cardiac arrest.

Methods: Ventricular fibrillation was induced and left untreated for 8 minutes followed by 16 minutes of mechanical CPR (mCPR) in 24 swine, under general anesthesia. Animals were randomized to 3 treatment groups (n = 8 per group): A) pL-VAD (Impella CP®) B) pL-VAD+AO, and C) AO.

View Article and Find Full Text PDF

Unlabelled: Prolonged cardiac arrest (CA) causes microvascular thrombosis which is a potential barrier to organ reperfusion during extracorporeal cardiopulmonary resuscitation (ECPR). The aim of this study was to test the hypothesis that early intra-arrest anticoagulation during cardiopulmonary resuscitation (CPR) and thrombolytic therapy during ECPR improve recovery of brain and heart function in a porcine model of prolonged out-of-hospital CA.

Design: Randomized interventional trial.

View Article and Find Full Text PDF

Background: Gastroesophageal resuscitative occlusion of the aorta (GROA) has been shown effective in creating zone II aortic occlusion capable of temporarily improving survival in animal models of lethal noncompressible torso hemorrhage. In this study, tandem application of GROA transitioning to resuscitative endovascular balloon occlusion of the aorta (REBOA) is explored to demonstrate feasibility as a potential point-of-injury bridge to more advanced care, using a swine model of lethal abdominal hemorrhage.

Methods: Swine (n = 19) were anesthetized, instrumented, and subjected to a combination of controlled and uncontrolled hemorrhage from a grade-V liver laceration.

View Article and Find Full Text PDF

Introduction: Oxidation-reduction (redox) reactions, and the redox potential (RP) that must be maintained for proper cell function, lie at the heart of physiologic processes in critical illness. Imbalance in RP reflects systemic oxidative stress, and whole blood RP measures have been shown to correlate with oxygen debt level over time in swine traumatic shock. We hypothesize that RP measures reflect changing concentrations of metabolites involved in oxidative stress.

View Article and Find Full Text PDF
Article Synopsis
  • The study aimed to evaluate the effects of epinephrine on coronary perfusion pressure (CPP) during CPR in a multicenter trial, addressing limitations of single lab experiments with varying patient populations.
  • Forty-five swine were used across five laboratories, with three treatment groups: continuous IV epinephrine infusion, boluses of epinephrine, or placebo, after inducing ventricular fibrillation and CPR.
  • Results showed no significant differences in CPP between the treatment groups, indicating that standard doses of epinephrine did not improve outcomes compared to placebo, while highlighting inter-laboratory variability in results.
View Article and Find Full Text PDF

Despite the enormous impact on human health, acute respiratory distress syndrome (ARDS) is poorly defined, and its timely diagnosis is difficult, as is tracking the course of the syndrome. The objective of this pilot study was to explore the utility of breath collection and analysis methodologies to detect ARDS through changes in the volatile organic compound (VOC) profiles present in breath. Five male Yorkshire mix swine were studied and ARDS was induced using both direct and indirect lung injury.

View Article and Find Full Text PDF

The status of peripheral arteries is known to be a key physiological indicator of the body's response to both acute and chronic medical conditions. In this paper, peripheral artery deformation is tracked by wearable photoplethysmograph (PPG) and piezo-electric (polyvinylidene difluoride, PVDF) sensors, under pressure-varying cuff. A simple mechanical model for the local artery and intervening tissue captures broad features present in the PPG and PVDF signals on multiple swine subjects, with respect to varying cuff pressure.

View Article and Find Full Text PDF

Background: Noncompressible torso hemorrhage management remains a challenge especially in the prehospital setting. We evaluated a device designed to occlude the aorta from the stomach (gastroesophageal resuscitative occlusion of the aorta [GROA]) for its ability to stop hemorrhage and improve survival in a swine model of lethal liver laceration and compared its performance to resuscitative endovascular balloon occlusion of the aorta (REBOA) and controls.

Methods: Swine (n = 24) were surgically instrumented and a 30% controlled arterial hemorrhage over 20 minutes was followed by liver laceration.

View Article and Find Full Text PDF

This study investigated the use of a wearable ring made of polyvinylidene fluoride film to identify a low cardiac index (≤2 L/min). The waveform generated by the ring contains patterns that may be indicative of low blood pressure and/or high vascular resistance, both of which are markers of a low cardiac index. In particular, the waveform contains reflection waves whose timing and amplitude are correlated with pulse travel time and vascular resistance, respectively.

View Article and Find Full Text PDF

Background: Cerebrovascular autoregulation (CA) is a protective mechanism that enables the cerebral vasculature to automodulate tone in response to changes in cerebral perfusion pressure to ensure constant levels of cerebral blood flow (CBF) and oxygen delivery. CA can be impaired after neurological injury and contributes to secondary brain injury. In this study, we report novel impedance indices using trans-ocular brain impedance (TOBI) during controlled systemic hemorrhage and hypotension to assess CA in comparison with pressure reactivity index (PRx).

View Article and Find Full Text PDF

Aim: High-dose valproic acid (VPA) improves the survival and neurologic outcomes after asphyxial cardiac arrest (CA) in rats. We characterized the pharmacokinetics, pharmacodynamics, and safety of high-dose VPA in a swine CA model to advance clinical translation.

Methods: After 8 ​min of untreated ventricular fibrillation CA, 20 male Yorkshire swine were resuscitated until return of spontaneous circulation (ROSC).

View Article and Find Full Text PDF

To date, existing animal models of the acute respiratory distress syndrome (ARDS) have failed to translate preclinical discoveries into effective pharmacotherapy or diagnostic biomarkers. To address this translational gap, we developed a high-fidelity swine model of ARDS utilizing clinically relevant lung injury exposures. Fourteen male swine were anesthetized, mechanically ventilated, and surgically instrumented for hemodynamic monitoring, blood, and tissue sampling.

View Article and Find Full Text PDF

Enzymatic colorimetric analysis of metabolites provides signatures of energy conversion and biosynthesis associated with disease onsets and progressions. Miniaturized photodetectors based on emerging two-dimensional transition metal dichalcogenides (TMDCs) promise to advance point-of-care diagnosis employing highly sensitive enzymatic colorimetric detection. Reducing diagnosis costs requires a batched multisample assay.

View Article and Find Full Text PDF

Background: Noncompressible torso hemorrhage (NCTH) of the abdomen is a challenge to rapidly control and treat in the prehospital and emergency department settings. In this pilot study, we developed a novel intraperitoneal hemostasis device (IPHD) prototype and evaluated its ability for slowing NCTH and prolonging survival in a porcine model of lethal abdominal multiorgan hemorrhage.

Methods: Yorkshire male swine (N = 8) were instrumented under general anesthesia for monitoring of hemodynamics and blood sampling.

View Article and Find Full Text PDF

Aim: It remains unclear whether cardiac arrest (CA) resuscitation generates aerosols that can transmit respiratory pathogens. We hypothesize that chest compression and defibrillation generate aerosols that could contain the SARS-CoV-2 virus in a swine CA model.

Methods: To simulate witnessed CA with bystander-initiated cardiopulmonary resuscitation, 3 female non-intubated swine underwent 4 min of ventricular fibrillation without chest compression or defibrillation (no-flow) followed by ten 2-min cycles of mechanical chest compression and defibrillation without ventilation.

View Article and Find Full Text PDF

Background: The systemic responses to infection and its progression to sepsis remains poorly understood. Progress in the field has been stifled by the shortcomings of experimental models which include poor replication of the human condition. To address these challenges, we developed and piloted a novel large animal model of severe infection that is capable of generating multi-system clinically relevant data.

View Article and Find Full Text PDF

Background: Resuscitative endovascular balloon occlusion of the aorta (REBOA) has been shown to be effective for management of noncompressible torso hemorrhage. However, this technique requires arterial cannulation, which can be time-consuming and not amendable to placement in austere environments. We present a novel, less invasive aortic occlusion device and technique designated gastroesophageal resuscitative occlusion of the aorta (GROA).

View Article and Find Full Text PDF

Cerebrovascular autoregulation (CA) is often impaired following traumatic brain injury. Established technologies and metrics used to assess CA are invasive and conducive for measurement, but not for continuous monitoring. We developed a trans-ocular brain impedance (TOBI) method that may provide non-invasive and continuous indices to assess CA.

View Article and Find Full Text PDF

A continuous microfluidic viscometer is used to measure blood coagulation. The viscometer operates by flowing oil and blood into a cross section where droplets are generated. At a set pressure, the length of the droplets is inversely proportional to the viscosity of the blood sample being delivered.

View Article and Find Full Text PDF