The mustard family (Brassicaceae) is a scientifically and economically important family, containing the model plant Arabidopsis thaliana and numerous crop species that feed billions worldwide. Despite its relevance, most phylogenetic trees of the family are incompletely sampled and often contain poorly supported branches. Here, we present the most complete Brassicaceae genus-level family phylogenies to date (Brassicaceae Tree of Life or BrassiToL) based on nuclear (1,081 genes, 319 of the 349 genera; 57 of the 58 tribes) and plastome (60 genes, 265 genera; all tribes) data.
View Article and Find Full Text PDFAustralia's 2019-2020 'Black Summer' bushfires burnt more than 8 million hectares of vegetation across the south-east of the continent, an event unprecedented in the last 200 years. Here we report the impacts of these fires on vascular plant species and communities. Using a map of the fires generated from remotely sensed hotspot data we show that, across 11 Australian bioregions, 17 major native vegetation groups were severely burnt, and up to 67-83% of globally significant rainforests and eucalypt forests and woodlands.
View Article and Find Full Text PDFClose scrutiny of (Goodeniaceae) and allied genera in the 'Core Goodeniaceae' over recent years has clarified our understanding of this captivating group. While expanded sampling, sequencing of multiple regions, and a genome skimming reinforced backbone clearly supported as monophyletic and distinct from and , there appears to be no synapomorphic characters that uniquely characterise this morphologically diverse clade. Within , there is strong support from nuclear, chloroplast and mitochondrial data for three major clades (Goodenia Clades A, B and C) and various subclades, which lead to earlier suggestions for the possible recognition of these as distinct genera.
View Article and Find Full Text PDFPaterson's curse (Echium plantagineum L. (Boraginaceae)), is an herbaceous annual native to Western Europe and northwest Africa. It has been recorded in Australia since the 1800's and is now a major weed in pastures and rangelands, but its introduction history is poorly understood.
View Article and Find Full Text PDFInvasive grass weeds reduce farm productivity, threaten biodiversity, and increase weed control costs. Identification of invasive grasses from native grasses has generally relied on the morphological examination of grass floral material. DNA barcoding may provide an alternative means to identify co-occurring native and invasive grasses, particularly during early growth stages when floral characters are unavailable for analysis.
View Article and Find Full Text PDFEchium plantagineum and E. vulgare are congeneric exotics first introduced to Australia in the early 1800 s. There, E.
View Article and Find Full Text PDFSpecies delimitation has seen a paradigm shift as increasing accessibility of genomic-scale data enables separation of lineages with convergent morphological traits and the merging of recently diverged ecotypes that have distinguishing characteristics. We inferred the process of lineage formation among Australian species in the widespread and highly variable genus Pelargonium by combining phylogenomic and population genomic analyses along with breeding system studies and character analysis. Phylogenomic analysis and population genetic clustering supported seven of the eight currently described species but provided little evidence for differences in genetic structure within the most widely distributed group that containing P.
View Article and Find Full Text PDFA general prediction of ecological theory is that climate change will favor invasive nonindigenous plant species (NIPS) over native species. However, the relative fitness advantage enjoyed by NIPS is often affected by resource limitation and potentially by extreme climatic events such as drought. Genetic constraints may also limit the ability of NIPS to adapt to changing climatic conditions.
View Article and Find Full Text PDF