We propose the nasal administration of calcium-enriched physiological salts as a new hygienic intervention with possible therapeutic application as a response to the rapid and tenacious spread of COVID-19. We test the effectiveness of these salts against viral and bacterial pathogens in animals and humans. We find that aerosol administration of these salts to the airways diminishes the exhalation of the small particles that face masks fail to filter and, in the case of an influenza swine model, completely block airborne transmission of disease.
View Article and Find Full Text PDFParticles can be delivered to the respiratory tract of animals using various techniques. Inhalation mimics environmental exposure but requires large amounts of aerosolized NPs over a prolonged dosing time, varies in deposited dose among individual animals, and results in nasopharyngeal and fur particle deposition. Although less physiological, intratracheal (IT) instillation allows quick and precise dosing.
View Article and Find Full Text PDFIn this work, heat stable dry powders of oxytocin (OT) suitable for delivery by oral inhalation were prepared. The OT dry powders were prepared by spray drying using excipients chosen to promote OT stability including trehalose, isoleucine, polyvinylpyrrolidone, citrate (sodium citrate and citric acid), and zinc salts (zinc chloride and zinc citrate). Characterization by laser diffraction indicated that the OT dry powders had a median particle size of 2 μm, making them suitable for delivery by inhalation.
View Article and Find Full Text PDFCarbon nanotubes (CNT) are attractive for use in fiber-reinforced composite materials due to their very high aspect ratio, combined with outstanding mechanical and electrical properties. Composite materials comprising a collagen matrix with embedded CNT were prepared by mixing solubilized Type I collagen with solutions of carboxylated single-walled carbon nanotubes (SWNT) at concentrations of 0, 0.2, 0.
View Article and Find Full Text PDF