Memory retrieval requires coordinated intra- and inter-regional activity in networks of brain structures. Dysfunction of these networks and memory impairment are seen in many psychiatric disorders, but relatively little is known about how memory retrieval and memory failure are represented at the level of local and regional oscillatory activity. To address this question, we measured local field potentials (LFPs) from mice as they explored a novel context, retrieved memories for contextual fear conditioning, and after administration of two amnestic agents: the NMDA receptor antagonist MK-801 and muscarinic acetylcholine receptor antagonist scopolamine (SCOP).
View Article and Find Full Text PDFMemory for contextual fear conditioning relies upon the retrosplenial cortex (RSC) regardless of how long ago conditioning occurred, whereas areas connected to the RSC, such as the dorsal hippocampus (DH) and anterior cingulate cortex (ACC) appear to play time-limited roles. To better understand whether these brain regions functionally interact during memory processing and how the passage of time affects these interactions, we simultaneously recorded local field potentials (LFPs) from these three regions as well as anterior dorsal thalamus (ADT), which provides one of the strongest inputs to RSC, and measured coherence of oscillatory activity within the theta (4-12Hz) and gamma (30-80Hz) frequency bands. We identified changes of theta coherence related to encoding, retrieval, and extinction of context fear, whereas changes in gamma coherence were restricted to fear extinction.
View Article and Find Full Text PDF