Publications by authors named "Brendan G Mackey"

Mangrove forests support unique biodiversity and provide a suite of ecosystem services (ES) that benefit people. Decades of continual mangrove loss and degradation have necessitated global efforts to protect and restore this important ecosystem. Generating and evaluating asset maps of biodiversity and ES is an important precursor to identifying locations that can deliver conservation outcomes across varying scales, such as maximising the co-occurrence of specific ES.

View Article and Find Full Text PDF

Changes in animal body size have been widely reported as a correlate of contemporary climate change. Body size affects metabolism and fitness, so changing size has implications for resilience, yet the climatic factors that drive size variation remain poorly understood. We test the role of mean and extreme temperature, rainfall, and remotely sensed primary productivity (NDVI) as drivers of body size in a sedentary, semi-arid Australian passerine, Ptilotula (Lichenostomus)penicillatus, over 23 years.

View Article and Find Full Text PDF

Tools for exploring and communicating the impact of uncertainty on spatial prediction are urgently needed, particularly when projecting species distributions to future conditions.We provide a tool for simulating uncertainty, focusing on uncertainty due to data quality. We illustrate the use of the tool using a Tasmanian endemic species as a case study.

View Article and Find Full Text PDF

Carbon stock change due to forest management and disturbance must be accounted for in UNFCCC national inventory reports and for signatories to the Kyoto Protocol. Impacts of disturbance on greenhouse gas (GHG) inventories are important for many countries with large forest estates prone to wildfires. Our objective was to measure changes in carbon stocks due to short-term combustion and to simulate longer-term carbon stock dynamics resulting from redistribution among biomass components following wildfire.

View Article and Find Full Text PDF

From analysis of published global site biomass data (n = 136) from primary forests, we discovered (i) the world's highest known total biomass carbon density (living plus dead) of 1,867 tonnes carbon per ha (average value from 13 sites) occurs in Australian temperate moist Eucalyptus regnans forests, and (ii) average values of the global site biomass data were higher for sampled temperate moist forests (n = 44) than for sampled tropical (n = 36) and boreal (n = 52) forests (n is number of sites per forest biome). Spatially averaged Intergovernmental Panel on Climate Change biome default values are lower than our average site values for temperate moist forests, because the temperate biome contains a diversity of forest ecosystem types that support a range of mature carbon stocks or have a long land-use history with reduced carbon stocks. We describe a framework for identifying forests important for carbon storage based on the factors that account for high biomass carbon densities, including (i) relatively cool temperatures and moderately high precipitation producing rates of fast growth but slow decomposition, and (ii) older forests that are often multiaged and multilayered and have experienced minimal human disturbance.

View Article and Find Full Text PDF

This paper briefly reviews the process of exotic pest risk assessments and presents some examples of emerging opportunities for spatial bioclimatic modeling of exotic species in Canada. This type of analysis can support risk assessments but does not replace the need for on-going high quality field-based observations to validate and update models. Bioclimatic analysis of several exotic pests is provided to illustrate both opportunities and limits.

View Article and Find Full Text PDF