The International Mouse Phenotyping Consortium reports the generation of new mouse mutant strains for over 5,000 genes, including 2,850 novel null, 2,987 novel conditional- ready, and 4,433 novel reporter alleles.
View Article and Find Full Text PDFPloidy represents the number of chromosome sets in a cell. Although gametes have a haploid genome (n), most mammalian cells have diploid genomes (2n). The diploid status of most cells correlates with the number of probable alleles for each autosomal gene and makes it difficult to target these genes via mutagenesis techniques.
View Article and Find Full Text PDFFBXO7 encodes an F box containing protein that interacts with multiple partners to facilitate numerous cellular processes and has a canonical role as part of an SCF E3 ubiquitin ligase complex. Mutation of FBXO7 is responsible for an early onset Parkinsonian pyramidal syndrome and genome-wide association studies have linked variants in FBXO7 to erythroid traits. A putative orthologue in Drosophila, nutcracker, has been shown to regulate the proteasome, and deficiency of nutcracker results in male infertility.
View Article and Find Full Text PDFCRISPR-Cas9 technologies have transformed genome-editing of experimental organisms and have immense therapeutic potential. Despite significant advances in our understanding of the CRISPR-Cas9 system, concerns remain over the potential for off-target effects. Recent studies have addressed these concerns using whole-genome sequencing (WGS) of gene-edited embryos or animals to search for de novo mutations (DNMs), which may represent candidate changes introduced by poor editing fidelity.
View Article and Find Full Text PDFA correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has been fixed in the paper.
View Article and Find Full Text PDFClustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated (Cas) assisted generation of mutant animals has become the method of choice for the elucidation of gene function in development and disease due to the shortened timelines for generation of a desired mutant, the ease of producing materials in comparison to other methodologies (such as embryonic stem cells, ESCs) and the ability to simultaneously target multiple genes in one injection session. Here we describe a step by step protocol, from preparation of materials through to injection and validation of a cytoplasmic injection, which can be used to generate CRISPR mutants. This can be accomplished from start of injection to completion within 2-4 h with high survival and developmental rates of injected zygotes and offers significant advantages over pronuclear and other previously described methodologies for microinjection.
View Article and Find Full Text PDFModelling human diseases caused by large genomic rearrangements has become more accessible since the utilization of CRISPR/Cas9 in mammalian systems. In a previous study, we showed that genomic rearrangements of up to one million base pairs can be generated by direct injection of CRISPR/Cas9 reagents into mouse zygotes. Although these rearrangements are ascertained by junction PCR, we describe here a variety of anticipated structural changes often involving reintegration of the region demarcated by the gRNAs in the vicinity of the edited locus.
View Article and Find Full Text PDFPAXX was identified recently as a novel nonhomologous end-joining DNA repair factor in human cells. To characterize its physiological roles, we generated Paxx-deficient mice. Like Xlf mice, Paxx mice are viable, grow normally, and are fertile but show mild radiosensitivity.
View Article and Find Full Text PDFApproximately one-third of all mammalian genes are essential for life. Phenotypes resulting from knockouts of these genes in mice have provided tremendous insight into gene function and congenital disorders. As part of the International Mouse Phenotyping Consortium effort to generate and phenotypically characterize 5,000 knockout mouse lines, here we identify 410 lethal genes during the production of the first 1,751 unique gene knockouts.
View Article and Find Full Text PDFSingle-nucleotide variations in C13orf31 (LACC1) that encode p.C284R and p.I254V in a protein of unknown function (called 'FAMIN' here) are associated with increased risk for systemic juvenile idiopathic arthritis, leprosy and Crohn's disease.
View Article and Find Full Text PDFDeletions, duplications, and inversions of large genomic regions covering several genes are an important class of disease causing variants in humans. Modeling these structural variants in mice requires multistep processes in ES cells, which has limited their availability. Mutant mice containing small insertions, deletions, and single nucleotide polymorphisms can be reliably generated using CRISPR/Cas9 directly in mouse zygotes.
View Article and Find Full Text PDFThe function of the majority of genes in the mouse and human genomes remains unknown. The mouse embryonic stem cell knockout resource provides a basis for the characterization of relationships between genes and phenotypes. The EUMODIC consortium developed and validated robust methodologies for the broad-based phenotyping of knockouts through a pipeline comprising 20 disease-oriented platforms.
View Article and Find Full Text PDFWith the advent of modern developmental biology and molecular genetics, the scientific community has generated thousands of newly genetically altered strains of laboratory mice with the aim of elucidating gene function. To this end, a large group of Institutions which form the International Mouse Phenotyping Consortium is generating and phenotyping a knockout mouse strain for each of the ~20,000 protein-coding genes using the mutant ES cell resource produced by the International Knockout Mouse Consortium. These strains are made available to the research community via public repositories, mostly as cryopreserved sperm or embryos.
View Article and Find Full Text PDFFertilization occurs when sperm and egg recognize each other and fuse to form a new, genetically distinct organism. The molecular basis of sperm-egg recognition is unknown, but is likely to require interactions between receptor proteins displayed on their surface. Izumo1 is an essential sperm cell-surface protein, but its receptor on the egg has not been described.
View Article and Find Full Text PDFWe describe here use of a cell-permeable Cre to efficiently convert the EUCOMM/KOMP-CSD tm1a allele to the tm1b form in preimplantation mouse embryos in a high-throughput manner, consistent with the requirements of the International Mouse Phenotyping Consortium-affiliated NIH KOMP2 project. This method results in rapid allele conversion and minimizes the use of experimental animals when compared to conventional Cre transgenic mouse breeding, resulting in a significant reduction in costs and time with increased welfare benefits.
View Article and Find Full Text PDFIn 2007, the International Knockout Mouse Consortium (IKMC) made the ambitious promise to generate mutations in virtually every protein-coding gene of the mouse genome in a concerted worldwide action. Now, 5 years later, the IKMC members have developed high-throughput gene trapping and, in particular, gene-targeting pipelines and generated more than 17,400 mutant murine embryonic stem (ES) cell clones and more than 1,700 mutant mouse strains, most of them conditional. A common IKMC web portal (www.
View Article and Find Full Text PDFCreating transgenic mammals is currently a very inefficient process. In addition to problems with transgene integration and unpredictable expression patterns of the inserted gene, embryo loss occurs at various developmental stages. In the present study, we demonstrate that this loss is due to chromosomal damage.
View Article and Find Full Text PDFPax6 is a key transcriptional regulator in eye, olfactory system, forebrain, pituitary cerebellum, spinal cord and pancreas development. Alternative splicing, promoter usage and multiple enhancers regulate the complex Pax6 spatio-temporal expression pattern. Chromosomal rearrangements which abolish PAX6 gene expression have been characterised downstream of the coding region.
View Article and Find Full Text PDF