Publications by authors named "Brendan C Mattingly"

Single-celled tubules represent a complicated structure that forms during development, requiring extension of a narrow cytoplasm surrounding a lumen exerting osmotic pressure that can burst the luminal membrane. Genetic studies on the excretory canal cell of Caenorhabditis elegans have revealed many proteins that regulate the cytoskeleton, vesicular transport, and physiology of the narrow canals. Here, we show that βH-spectrin regulates the placement of intermediate filament proteins forming a terminal web around the lumen, and that the terminal web in turn retains a highly conserved protein (EXC-9/CRIP1) that regulates apical endosomal trafficking.

View Article and Find Full Text PDF

Determination of luminal diameter is critical to the function of small single-celled tubes. A series of EXC proteins, including EXC-1, prevent swelling of the tubular excretory canals in Caenorhabditis elegans In this study, cloning of exc-1 reveals it to encode a homolog of mammalian IRG proteins, which play roles in immune response and autophagy and are associated with Crohn's disease. Mutants in exc-1 accumulate early endosomes, lack recycling endosomes, and exhibit abnormal apical cytoskeletal structure in regions of enlarged tubules.

View Article and Find Full Text PDF

Maintenance of the shape of biological tubules is critical for development and physiology of metazoan organisms. Loss of function of the Caenorhabditis elegans FGD protein EXC-5 allows large fluid-filled cysts to form in the lumen of the single-cell excretory canal tubules, while overexpression of exc-5 causes defects at the tubule's basolateral surface. We have examined the effects of altering expression levels of exc-5 on the distribution of fluorescently-marked subcellular organelles.

View Article and Find Full Text PDF