The ultimate goal of hair cell regeneration is to restore functional hearing. Because birds begin perceiving and producing song early in life, they provide a propitious model for studying not only whether regeneration of lost hair cells can return auditory sensitivity but also whether this regenerated periphery can restore complex auditory perception and production. They are the only animal where hair cell regeneration occurs naturally after hair cell loss and where the ability to correctly perceive and produce complex acoustic signals is critical to procreation and survival.
View Article and Find Full Text PDFBelgian Waterslager (BW) canaries have an inherited hearing loss due to missing and abnormal hair cells, but it is unclear whether the loss is congenital or developmental. We used auditory brainstem responses and scanning electron microscopy to describe the development of auditory sensitivity and hair cell abnormalities in BW and non-BW canaries. In both strains, adult ABR thresholds were higher than behavioral thresholds, but BW canaries exhibited higher thresholds than non-BW canaries across all frequencies.
View Article and Find Full Text PDFSongbirds and parrots deafened as nestlings fail to develop normal vocalizations, while birds deafened as adults show a gradual deterioration in the quality and precision of vocal production. Beyond this, little is known about the effect of hearing loss on the perception of vocalizations. Here, we induced temporary hearing loss in budgerigars with kanamycin and tested several aspects of the hearing, including the perception of complex, species-specific vocalizations.
View Article and Find Full Text PDFJ Rehabil Res Dev
September 2007
Sensory hair cells of the inner ear are susceptible to damage from a variety of sources including aging, genetic defects, and environmental stresses such as loud noises or chemotherapeutic drugs. Unfortunately, the consequence of this damage in humans is often permanent hearing/balance problems. The discovery that hair cells can regenerate in birds and other nonmammalian vertebrates has fueled a wide range of studies that are designed to find ways of restoring hearing and balance after such damage.
View Article and Find Full Text PDFWilliams syndrome (WS) is a genetic neurodevelopmental disorder, most often accompanied by mild-to-moderate mental retardation. Individuals with WS show unique communication strengths and impairments that are challenging to treat in community, educational, and vocational settings. Many issues regarding characteristics of auditory sensitivity in WS remain to be resolved.
View Article and Find Full Text PDFDeafness affects more than 40 million people in the UK and the USA, and many more world-wide. The primary cause of hearing loss is damage to or death of the sensory receptor cells in the inner ear, the hair cells. Birds can readily regenerate their cochlear hair cells but the mammalian cochlea has shown no ability to regenerate after damage.
View Article and Find Full Text PDF