Antimicrobial peptides (AMPs) are important mediator molecules of the innate defense mechanisms in a wide range of living organisms, including bacteria, mammals, and plants. Among them, peptide protease inhibitors (PPIs) from plants play a central role in their defense mechanisms by directly attacking pathogens or by modulating the plant's defense response. The growing prevalence of microbial resistance to currently available antibiotics has intensified the interest concerning these molecules as novel antimicrobial agents.
View Article and Find Full Text PDFBy-products from the industrialization of oilseeds, particularly chia, can be sustainably used for the development of new functional products. In this work, wheat breads supplemented with up to 10 mg of chia expeller hydrolysate/g of flour were prepared, obtaining fortified breads with acceptability for consumption, according to a preliminary consumer research study based on an affective test employing a five-point hedonic scale of global acceptance. In this context, protein hydrolysates of the chia expeller were produced using Alcalase, reaching a degree of hydrolysis of 54.
View Article and Find Full Text PDFFungal infections are a growing public health concern worldwide and the emergence of antifungal resistance has limited the number of therapeutic options. Therefore, developing novel strategies for identifying and developing new antifungal compounds is an active area of research in the pharmaceutical industry. In this study, we purified and characterized a trypsin protease inhibitor obtained from Yellow Bell Pepper ( L.
View Article and Find Full Text PDFChia expeller is a promising source of bioactive compounds suitable for the development of nutraceutical ingredients due to its functional, biological, and nutritional properties. In this work, chia expeller was hydrolysed with Alcalase-Flavourzyme sequential system and compared to the individual enzymes. A higher degree of hydrolysis (57.
View Article and Find Full Text PDF