While recombination is widely recognized to be a key modulator of numerous evolutionary phenomena, we have a poor understanding of how recombination rate itself varies and evolves within a species. Here, we performed a comprehensive study of recombination rate (rate of meiotic crossing over) in two natural populations of Drosophila pseudoobscura from Utah and Arizona, USA. We used an amplicon sequencing approach to obtain high-quality genotypes in approximately 8,000 individual backcrossed offspring (17 mapping populations with roughly 530 individuals each), for which we then quantified crossovers.
View Article and Find Full Text PDFWhile females often reject courtship attempts by heterospecific males, reproductive interference by harassment from such males can nonetheless occur, potentially reducing female fitness. Such effects may be profound following a range expansion, when males from a new species may suddenly encounter (and perhaps even become abundant relative to) females of related native species. recently invaded North America and may impact native species through reproductive interference and other processes.
View Article and Find Full Text PDFGenetic studies of secondary sexual traits provide insights into whether and how selection drove their divergence among populations, and these studies often focus on the fraction of variation attributable to genes on the X-chromosome. However, such studies may sometimes misinterpret the amount of variation attributable to the X-chromosome if using only simple reciprocal F crosses, or they may presume sexual selection has affected the observed phenotypic variation. We examined the genetics of a secondary sexual trait, male sex comb size, in .
View Article and Find Full Text PDFFine scale meiotic recombination maps have uncovered a large amount of variation in crossover rate across the genomes of many species, and such variation in mammalian and yeast genomes is concentrated to <5kb regions of highly elevated recombination rates (10-100x the background rate) called "hotspots." Drosophila exhibit substantial recombination rate heterogeneity across their genome, but evidence for these highly-localized hotspots is lacking. We assayed recombination across a 40Kb region of Drosophila pseudoobscura chromosome 2, with one 20kb interval assayed every 5Kb and the adjacent 20kb interval bisected into 10kb pieces.
View Article and Find Full Text PDFThis multi-day exercise is designed for a college Genetics and Evolution laboratory to demonstrate concepts of inheritance and phenotypic and molecular evolution using a live model organism, . Students set up an experimental fruit fly population consisting of ten white eyed flies and one red eyed fly. Having red eyes is advantageous compared to having white eyes, allowing students to track the spread of this advantageous trait over several generations.
View Article and Find Full Text PDFOne of the most influential observations in molecular evolution has been a strong association between local recombination rate and nucleotide polymorphisms across the genome. This is interpreted as evidence for ubiquitous natural selection. The alternative explanation, that recombination is mutagenic, has been rejected by the absence of a similar association between local recombination rate and nucleotide divergence between species.
View Article and Find Full Text PDF