Polycystin-1 (PC1) is the membrane protein product of the PKD1 gene whose mutation is responsible for 85% of the cases of autosomal dominant polycystic kidney disease (ADPKD). ADPKD is primarily characterized by the formation of renal cysts and potential kidney failure. PC1 is an atypical G protein-coupled receptor (GPCR) consisting of 11 transmembrane helices and an autocatalytic GAIN domain that cleaves PC1 into extracellular N-terminal (NTF) and membrane-embedded C-terminal (CTF) fragments.
View Article and Find Full Text PDFAm J Physiol Renal Physiol
October 2022
Autosomal dominant polycystic kidney disease (ADPKD) is a debilitating renal neoplastic disorder with limited treatment options. It is characterized by the formation of large fluid-filled cysts that develop from kidney tubules through abnormal cell proliferation and cyst-filling fluid secretion driven by cAMP-dependent Cl secretion. We tested the effectiveness of the indazole carboxylic acid H2-gamendazole (H2-GMZ), a derivative of lonidamine, to inhibit these processes using in vitro and in vivo models of ADPKD.
View Article and Find Full Text PDFPolycystin-1 (PC1) is an important unusual G protein-coupled receptor (GPCR) with 11 transmembrane domains, and its mutations account for 85% of cases of autosomal dominant polycystic kidney disease (ADPKD). PC1 shares multiple characteristics with Adhesion GPCRs. These include a GPCR proteolysis site that autocatalytically divides these proteins into extracellular, N-terminal, and membrane-embedded, C-terminal fragments (CTF), and a tethered agonist (TA) within the N-terminal stalk of the CTF that is suggested to activate signaling.
View Article and Find Full Text PDFPolycystic kidney disease (PKD) is a genetic disorder characterized by aberrant renal epithelial cell proliferation and formation and progressive growth of numerous fluid-filled cysts within the kidneys. Previously, we showed that there is elevated Notch signaling compared to normal renal epithelial cells and that Notch signaling contributes to the proliferation of cystic cells. Quinomycin A, a bis-intercalator peptide, has previously been shown to target the Notch signaling pathway and inhibit tumor growth in cancer.
View Article and Find Full Text PDFDespite the recent launch of tolvaptan, the search for safer polycystic kidney disease (PKD) drugs continues. Ciclopirox (CPX) or its olamine salt (CPX-O) is contained in a number of commercially available antifungal agents. CPX is also reported to possess anticancer activity.
View Article and Find Full Text PDFMetanephric organ culture, or ex vivo embryonic kidney culture, was developed in the mid-twentieth century as a means to understand the development of the mammalian kidney and was used in early studies of polycystic kidney disease to explore mechanisms of renal cyst initiation by non-genetic factors. Following the identification of cystogenic genes, a resurgence of the use of metanephric organ culture occurred and has yielded insight into basic mechanisms of cystic dilation; facilitated identification of pathogenic pathways and potential therapeutic targets; and provided a system for evaluating therapeutic agents. This chapter provides detailed, step-by-step protocols with rationale and tips for the establishment, maintenance and treatment of metanephric organ cultures, and for performance of the most commonly employed secondary analyses of these cultures.
View Article and Find Full Text PDFAutosomal dominant polycystic kidney disease (ADPKD) is characterized by the growth of renal cysts that ultimately destroy kidney function. Mutations in the PKD1 and PKD2 genes cause ADPKD. Their protein products, polycystin-1 (PC1) and polycystin-2 (PC2) have been proposed to form a calcium-permeable receptor-channel complex; however the mechanisms by which they function are almost completely unknown.
View Article and Find Full Text PDFPolycystic kidney disease (PKD) is a genetic disorder characterized by fluid-filled cysts in the kidney and liver that ultimately leads to end-stage renal disease. Currently there is no globally approved therapy for PKD. The Notch signaling pathway regulates cellular processes such as proliferation and de-differentiation, which are cellular hallmarks of PKD.
View Article and Find Full Text PDFcAMP stimulates cell proliferation and Cl(-)-dependent fluid secretion, promoting the progressive enlargement of renal cysts in autosomal dominant polycystic kidney disease (ADPKD). Intracellular cAMP levels are determined by the balance of cAMP synthesis by adenylyl cyclases and degradation by phosphodiesterases (PDEs). Therefore, PDE isoform expression and activity strongly influence global and compartmentalized cAMP levels.
View Article and Find Full Text PDFCyst enlargement in autosomal dominant polycystic kidney disease (ADPKD) requires the transepithelial secretion of fluid into the cyst lumen. We previously showed that physiological amounts of ouabain enhance cAMP-dependent fluid secretion and cyst growth of human ADPKD cyst epithelial cells in culture and formation of cyst-like dilations in metanephric kidneys from Pkd1 mutant mice. Here, we investigated the mechanisms by which ouabain promotes cAMP-dependent fluid secretion and cystogenesis.
View Article and Find Full Text PDFCells derived from renal cysts of patients with autosomal dominant polycystic kidney disease (ADPKD) are abnormally sensitive to ouabain, responding to physiological ouabain concentrations with enhanced proliferation and increased forskolin-induced transepithelial fluid secretion. This requires activation of the epidermal growth factor receptor (EGFR), Src kinase and the extracellular signal-regulated kinases MEK and ERK. Here, we have determined if the ADPKD phenotype obtained in mouse cortical collecting duct cells by stable overexpression of the C-terminal domain of polycystin-1 (PC-1 C-tail) also elicits the ADPKD-like response to ouabain in the cells.
View Article and Find Full Text PDFIn autosomal-dominant polycystic kidney disease (ADPKD), renal cysts develop by aberrant epithelial cell proliferation and transepithelial fluid secretion. We previously showed that ouabain increases proliferation of cultured human ADPKD cells via stimulation of the EGF receptor (EGFR)-Src-MEK/ERK signaling pathway. We examined whether ouabain affects fluid secretion and in vitro cyst growth of human ADPKD cell monolayers, ADPKD cell microcysts cultured in a three-dimensional collagen matrix, and metanephric organ cultures from Pkd1(m1Bei) mice.
View Article and Find Full Text PDFThe pan-histone deacetylase (HDAC) inhibitor, trichostatin A, was found to reduce cyst progression and slow the decline of kidney function in Pkd2 knockout mice, model of autosomal dominant polycystic kidney disease (ADPKD). Here we determine whether HDAC inhibition acts by regulating cell proliferation to prevent cyst formation, or by other mechanisms. The loss of Pkd1 caused an upregulation of the inhibitor of differentiation 2 (Id2), a transcription regulator, triggering an Id2-mediated downregulation of p21 in mutant mouse embryonic kidney cells in vitro.
View Article and Find Full Text PDFMitogen-activated protein kinase (MAPK) cascades regulate a wide variety of cellular processes that ultimately depend on changes in gene expression. We have found a novel mechanism whereby one of the key MAP3 kinases, Mekk1, regulates transcriptional activity through an interaction with p53. The tumor suppressor protein p53 down-regulates a number of genes, including the gene most frequently mutated in autosomal dominant polycystic kidney disease (PKD1).
View Article and Find Full Text PDFAm J Physiol Renal Physiol
December 2008
The retinoic acids all-trans retinoic acid (AT-RA) and 9-cis retinoic acid (9C-RA) and the retinoic acid receptors RAR and RXR significantly induce transcriptional activity from a 200-bp PKD1 proximal promoter in transfected mammalian cells. This PKD1 promoter region contains Ets, p53, and GC box motifs, but lacks a canonical RAR/RXR motif. Mutagenesis of the Ets sites did not affect RA induction.
View Article and Find Full Text PDFAutosomal dominant polycystic kidney disease (ADPKD) is caused by heterozygous mutations in either PKD1 or PKD2, genes that encode polycystin-1 and polycystin-2, respectively. We show here that tumor necrosis factor-alpha (TNF-alpha), an inflammatory cytokine present in the cystic fluid of humans with ADPKD, disrupts the localization of polycystin-2 to the plasma membrane and primary cilia through a scaffold protein, FIP2, which is induced by TNF-alpha. Treatment of mouse embryonic kidney organ cultures with TNF-alpha resulted in formation of cysts, and this effect was exacerbated in the Pkd2(+/-) kidneys.
View Article and Find Full Text PDFPolycystin-1 (PC1) may play an important role in skeletogenesis through regulation of the bone-specific transcription factor Runx2-II. In the current study we found that PC1 co-localizes with the calcium channel polycystin-2 (PC2) in primary cilia of MC3T3-E1 osteoblasts. To establish the role of Runx2-II in mediating PC1 effects on bone, we crossed heterozygous Pkd1(m1Bei) and Runx2-II mice to create double heterozygous mice (Pkd1(+/m1Bei)/Runx2-II(+/-)) deficient in both PC1 and Runx2-II.
View Article and Find Full Text PDFMetanephric organ culture has been used to determine whether embryonic kidney tubules can be stimulated by cAMP to form cysts. Under basal culture conditions, wild-type kidneys from embryonic day 13.5 to 15.
View Article and Find Full Text PDFThis study provides evidence that the tumor suppressor protein, p53, is a transcriptional repressor of PKD1. Kidneys of p53-null mice expressed higher Pkd1 mRNA levels than wild-type littermates; gamma-irradiation suppressed PKD1 gene expression in p53+/+ but not p53-/- cells; and chromatin immunoprecipitation assays demonstrated the binding of p53 to the PKD1 promoter in vivo. In transient transfection assays, p53 repressed PKD1 promoter activity independently of endogenous p21.
View Article and Find Full Text PDFWe examined the osteoblast/osteocyte expression and function of polycystin-1 (PC1), a transmembrane protein that is a component of the polycystin-2 (PC2)-ciliary mechano-sensor complex in renal epithelial cells. We found that MC3T3-E1 osteoblasts and MLO-Y4 osteocytes express transcripts for PC1, PC2, and the ciliary proteins Tg737 and Kif3a. Immunohistochemical analysis detected cilia-like structures in MC3T3-E1 osteoblastic and MLO-Y4 osteocyte-like cell lines as well as primary osteocytes and osteoblasts from calvaria.
View Article and Find Full Text PDFBiochem Biophys Res Commun
April 2006
The Ets family of transcription factors consists of a group of highly conserved sequence-specific DNA binding proteins that functionally cooperate with other transcription factors to regulate a number of diverse cellular processes including proliferation, differentiation, and apoptosis. We have analyzed a 3.3kb 5'-upstream region of the human PKD1 promoter, using transient transfection in HEK293T cells and Drosophila SL2 cells, to demonstrate that the PKD1 promoter is a target of Ets family transcription factors.
View Article and Find Full Text PDFRegulation of intracellular Ca(2+) mobilization has been associated with the functions of polycystin-1 (PC1) and polycystin-2 (PC2), the protein products of the PKD1 and PKD2 genes. We have now demonstrated that PC1 can activate the calcineurin/NFAT (nuclear factor of activated T-cells) signaling pathway through Galpha(q) -mediated activation of phospholipase C (PLC). Transient transfection of HEK293T cells with an NFAT promoter-luciferase reporter demonstrated that membrane-targeted PC1 constructs containing the membrane proximal region of the C-terminal tail, which includes the heterotrimeric G protein binding and activation domain, can stimulate NFAT luciferase activity.
View Article and Find Full Text PDFcAMP can be either mitogenic or anti-mitogenic, depending on the cell type. We demonstrated previously that cAMP inhibited the proliferation of normal renal epithelial cells and stimulated the proliferation of cells derived from the cysts of polycystic kidney disease (PKD) patients. The protein products of the genes causing PKD, polycystin-1 and polycystin-2, are thought to regulate intracellular calcium levels, suggesting that abnormal polycystin function may affect calcium signaling and thus cause a switch to the cAMP growth-stimulated phenotype.
View Article and Find Full Text PDF