Objective: Neurodegeneration with brain iron accumulation (NBIA) represents a distinctive phenotype of neurodegenerative disease for which several causative genes have been identified. The spectrum of neurologic disease associated with mutations in NBIA genes is broad, with phenotypes that range from infantile neurodegeneration and death in childhood to adult-onset parkinsonism-dystonia. Here we report the discovery of a novel gene that leads to a distinct form of NBIA.
View Article and Find Full Text PDFmiR-103 and miR-107, microRNAs hosted by pantothenate kinase genes, are proposed to regulate cellular lipid metabolism. microRNA-mediated regulation is complex, potentially affecting expression of the host gene, related enzymes within the same pathway, or apparently distinct targets. Using qRT-PCR, we demonstrate that miR-103 and miR-107 expression does not correlate with expression of host pantothenate kinase genes in mouse tissues.
View Article and Find Full Text PDFPantothenate kinase 2 (PANK2) is an essential regulatory enzyme in coenzyme A biosynthesis. PANK2 mutations cause pantothenate kinase-associated neurodegeneration (PKAN), which leads to pigmentary retinopathy, progressive dystonia and other abnormalities. Two nearly identical PANK2 isoforms have been described: short PANK2 and mature PANK2, which are processed from a precursor isoform.
View Article and Find Full Text PDF