Publications by authors named "Brenda Gerhardt"

The kinase suppressor of ras 2 (KSR2) gene resides at human chromosome 12q24, a region linked to obesity and type 2 diabetes (T2D). While knocking out and phenotypically screening mouse orthologs of thousands of druggable human genes, we found KSR2 knockout (KSR2(-/-)) mice to be more obese and glucose intolerant than melanocortin 4 receptor(-/-) (MC4R(-/-)) mice. The obesity and T2D of KSR2(-/-) mice resulted from hyperphagia which was unresponsive to leptin and did not originate downstream of MC4R.

View Article and Find Full Text PDF

Rpn13 is a novel mammalian proteasomal receptor that has recently been identified as an amplification target in ovarian cancer. It can interact with ubiquitin and activate the deubiquitinating enzyme Uch37 at the 26S proteasome. Since neither Rpn13 nor Uch37 is an integral proteasomal subunit, we explored whether either protein is essential for mammalian development and survival.

View Article and Find Full Text PDF

Purpose: Goals of this study were to determine if pharmacological or genetic inhibition of Rho-associated coiled coil containing protein kinases (known as ROCK1 and ROCK2) alters intraocular pressure (IOP) in mice.

Methods: Micro-cannulation of the anterior chamber was used to measure IOP in wild-type B6.129 hybrid mice following treatment with ROCK inhibitors Y-27632 or Y-39983.

View Article and Find Full Text PDF

Clinical studies have shown differential efficacy of several antidepressants in children and adolescents compared to adults, yet few animal studies have sought to characterize this phenomenon. We compared effects of fluoxetine and imipramine in two common behavioral assays that hold high predictive validity for antidepressant activity, tail suspension and forced swim test, using juvenile (5 weeks) and adult (12 weeks) mice from 3 strains. C57BL/6J-Tyr(c-Brd) (C57), hybrid C57BL/6J-Tyr(c-Brd)x129S5/SvEvBrd (F2), and Balb/cAnNTac (Balb/C) mice were tested in forced swim test and tail suspension after i.

View Article and Find Full Text PDF

The alphabeta and gammadelta T lineages are thought to arise from a common precursor; however, the regulation of separation and development of these lineages is not fully understood. We report here that development of alphabeta and gammadelta precursors was differentially affected by elimination of ribosomal protein L22 (Rpl22), which is ubiquitously expressed but not essential for translation. Rpl22 deficiency selectively arrested development of alphabeta-lineage T cells at the beta-selection checkpoint by inducing their death.

View Article and Find Full Text PDF