One of the major limitations to effective siRNA delivery is the lack of a siRNA-specific delivery system. Currently, the same delivery systems that are used for plasmid DNA (pDNA) delivery to the cell nucleus are used for siRNA delivery to the cytoplasm. To fill this gap, the objective of this study was to design a biopolymer that can be programmed via its amino acid sequence to deliver siRNA specifically to cytoplasm.
View Article and Find Full Text PDFAdv Drug Deliv Rev
December 2010
Cationic polymers created through recombinant DNA technology have the potential to fill a void in the area of gene delivery. The recombinant cationic polymers to be discussed here are amino acid based polymers synthesized in E. coli with the purpose to not only address the major barriers to efficient gene delivery but offer safety, biodegradability, targetability and cost-effectiveness.
View Article and Find Full Text PDFGene Ther Mol Biol
January 2009
Gene therapy is perceived as a revolutionary technology with the promise to cure almost any disease, provided that we understand its genetic basis. However, enthusiasm has rapidly abated as multiple clinical trials have failed to show efficacy. The limiting factor seems to be the lack of a suitable delivery system to carry the therapeutic genes to the target tissue safely and efficiently.
View Article and Find Full Text PDFA biomimetic vector was genetically engineered to contain at precise locations (a) an adenovirus mu peptide to condense pDNA into nanosize particles, (b) a synthetic cyclic peptide to target breast cancer cells and enhance internalization of nanoparticles, (c) a pH-responsive synthetic fusogenic peptide to disrupt endosome membranes and facilitate escape of the nanoparticles into the cytosol, and (d) a nuclear localization signal from human immunodeficiency virus for microtubule mediated transfer of genetic material to the nucleus. The vector was characterized using physicochemical and biological assays to demonstrate the functionality of each motif in the vector backbone. The results demonstrated that the vector is able to condense plasmid DNA into nanosize particles (<100 nm), protect pDNA from serum endonucleases, target ZR-75-1 breast cancer cells and internalize, efficiently disrupt endosome membranes, exploit microtubules to reach nucleus and mediate gene expression.
View Article and Find Full Text PDFA novel multi-domain biopolymer was designed and genetically engineered with the purpose to target and transfect cancer cells. The biopolymer contains at precise locations: 1) repeating units of arginine and histidine to condense pDNA and lyse endosome membranes, 2) a HER2 targeting affibody to target cancer cells, 3) a pH responsive fusogenic peptide to destabilize endosome membranes and enhance endosomolytic activity of histidine residues, and 4) a nuclear localization signal to enhance translocation of pDNA towards the cell nucleus. The results demonstrated that the biopolymer was able to condense pDNA into nanosize particles, protect pDNA from serum endonucleases, target HER2 positive cancer cells but not HER2 negative ones, efficiently disrupt endosomes, and effectively reach the cell nucleus of target cells to mediate gene expression.
View Article and Find Full Text PDFDesigner biomimetic vectors are genetically engineered biomacromolecules that are designed to mimic viral characteristics in order to overcome the cellular barriers associated with the targeted gene transfer. The vector in this study was genetically engineered to contain at precise locations: a) four tandem repeating units of N-terminal domain of histone H2A to condense DNA into stable nanosize particles suitable for cellular uptake, b) a model targeting motif to target HER2 and enhance internalization of nanoparticles, and c) a pH-responsive synthetic fusogenic peptide to disrupt endosome membranes and promote escape of the nanoparticles into the cytosol. The results demonstrate that a fully functional, multi-domain, designer vector can be engineered to target cells with high specificity, overcome the biological barriers associated with targeted gene transfer, and mediate efficient gene transfer.
View Article and Find Full Text PDFThe objective of this study was to evaluate the effect of vector architecture on DNA condensation, particle stability, and gene transfer efficiency. Two recombinant non-viral vectors with the same amino acid compositions but different architectures, composed of lysine-histidine (KH) repeating units fused to fibroblast growth factor, were genetically engineered. In one vector lysine residues were dispersed (KHKHKHKHKK)(6)-FGF2, whereas in the other they were in clusters (KKKHHHHKKK)(6)-FGF2.
View Article and Find Full Text PDF