SARS-CoV-2 spreads by infectious aerosols and droplets from the respiratory tract. Masks and respirators can reduce the transmission of infectious respiratory diseases by collecting these aerosols at the source. The ability of source control devices to block aerosols can be tested by expelling an aerosol through a headform using constant airflows, which are simpler, or cyclic airflows, which are more realistic but require more complex methods.
View Article and Find Full Text PDFBackground: During the COVID-19 pandemic, face masks are used as source control devices to reduce the expulsion of respiratory aerosols from infected people. Modifications such as mask braces, earloop straps, knotting and tucking, and double masking have been proposed to improve mask fit however the data on source control are limited.
Methods: The effectiveness of mask fit modifications was determined by conducting fit tests on human subjects and simulator manikins and by performing simulated coughs and exhalations using a source control measurement system.
Universal mask wearing is recommended to help control the spread of COVID-19. Masks reduce the expulsion of aerosols of respiratory fluids into the environment (called source control) and offer some protection to the wearer. Masks are often characterized using filtration efficiency, airflow resistance, and manikin or human fit factors, which are standard metrics used for personal protective devices.
View Article and Find Full Text PDFRecently, total inward leakage (TIL) for filtering facepiece and elastomeric half-mask respirators (EHRs) was measured according to the International Organization for Standardization (ISO) test method standard 16900-1:2014 that showed larger TIL for corn oil aerosol than for NaCl aerosol. Comparison of TIL measured for different aerosols for higher protection level respirators is lacking. The objective of this study was to determine TIL for EHRs, full-facepiece respirators, and loose-fitting and tight-fitting powered air-purifying respirators (PAPRs) using NaCl and corn oil aerosols to compare.
View Article and Find Full Text PDFUniversal mask wearing is recommended by the Centers for Disease Control and Prevention to help control the spread of COVID-19. Masks reduce the expulsion of respiratory aerosols (called source control) and offer some protection to the wearer. However, masks vary greatly in their designs and construction materials, and it is not clear which are most effective.
View Article and Find Full Text PDFAn ASTM International subcommittee on Respiratory Protection, F23.65 is currently developing a consensus standard for assessing respirator fit capability (RFC) criteria of half-facepiece air-purifying particulate respirators. The objective of this study was to evaluate if the test methods being developed for half-facepiece respirators can reasonably be applied to nonpowered full-facepiece-air-purifying respirators (FF-APR).
View Article and Find Full Text PDFThe International Organization for Standardization (ISO) standard 16900-1:2014 specifies the use of sodium chloride (NaCl) and corn oil aerosols, and sulfur hexafluoride gas for measuring total inward leakage (TIL). However, a comparison of TIL between different agents is lacking. The objective of this study was to measure and compare TIL for respirators using corn oil and NaCl aerosols.
View Article and Find Full Text PDFA drinking water method for perfluoroalkyl acids (PFAAs) is presented that addresses the occurrence monitoring needs of the U.S. Environmental Protection Agency (EPA) for a future unregulated contaminant monitoring regulation (UCMR).
View Article and Find Full Text PDFMycobacterium avium complex (MAC) is a group of ubiquitous and opportunistic bacterial pathogens included on the U.S. Environmental Protection Agency Drinking Water Contaminant Candidate List.
View Article and Find Full Text PDFSeveral coliform species other than Escherichia coli are often associated with and possibly responsible for acute and chronic diarrheal disease. Recent evidence suggests that non- Escherichia coli coliforms may be capable of colonizing the human intestine and producing enterotoxin(s) in high-yield. Whether these organisms are newly capable of causing disease because of infestation with extrachromosomal factors mediating pathogenicity or simply because of inherent pathogenic capabilities that have gone unrecognized, they pose a potential health hazard.
View Article and Find Full Text PDF