Organoid culture systems are self-renewing, three-dimensional (3D) models derived from pluripotent stem cells, adult derived stem cells or cancer cells that recapitulate key molecular and structural characteristics of their tissue of origin. They generally form into hollow structures with apical-basolateral polarization. Mass spectrometry imaging (MSI) is a powerful analytical method for detecting a wide variety of molecules in a single experiment while retaining their spatiotemporal distribution.
View Article and Find Full Text PDFArticular cartilage is exposed to a gradient of oxygen levels ranging from 5% at the surface to 1% in the deepest layers. While most cartilage research is performed in supraphysiological oxygen levels (19-21%), culturing chondrocytes under hypoxic oxygen levels (≤8%) promotes the chondrogenic phenotype. Exposure of cells to various oxygen levels alters their lipid metabolism, but detailed studies examining how hypoxia affects lipid metabolism in chondrocytes are lacking.
View Article and Find Full Text PDFThe separation-induced vocalization test in guinea pig pups is one of many that has been used to screen for anxiolytic-like properties of drugs. The test is based on the cross-species phenomenon that infants emit distress calls when placed in social isolation. Here we report a systematic review and meta-analysis of pharmacological intervention in the separation-induced vocalization test in guinea pig pups.
View Article and Find Full Text PDFBackground: The methodological quality of animal studies is an important factor hampering the translation of results from animal studies to a clinical setting. Systematic reviews of animal studies may provide a suitable method to assess and thereby improve their methodological quality.
Objectives: The aims of this study were: 1) to evaluate the risk of bias assessment in animal-based systematic reviews, and 2) to study the internal validity of the primary animal studies included in these systematic reviews.
Mouse gene Ptprr encodes multiple protein tyrosine phosphatase receptor type R (PTPRR) isoforms that negatively regulate mitogen-activated protein kinase (MAPK) signaling pathways. In the mouse brain, PTPRR proteins are expressed in cerebellum, olfactory bulb, hippocampus, amygdala and perirhinal cortex but their precise role in these regions remains to be determined. Here, we evaluated phenotypic consequences of loss of PTPRR activity and found that basal smell was normal for Ptprr(-/-) mice.
View Article and Find Full Text PDF