This report describes the implementation of a 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY) dye into the ligand framework of a borane. The redox-active nature of the BODIPY dye is utilized to generate a family of molecular boranes that are capable of exhibiting tunable Lewis acidities through BODIPY-based redox events.
View Article and Find Full Text PDFPhys Chem Chem Phys
April 2021
Electron transfer promoted by the coordination of a substrate molecule to a Lewis acid or hydrogen bonding group is a critical step in many biological and catalytic transformations. This computational study investigates the nature of the interaction between benzoquinone and one and two Lewis acids by examining the influence of Lewis acid strength on the ability to alter the two reduction potentials of the coordinated benzoquinone molecule. To investigate this interaction, the coordination of the neutral (Q), singly reduced ([Q]˙-), and doubly reduced benzoquinone ([Q]2-) molecule to eight Lewis acids was analyzed.
View Article and Find Full Text PDFThe catalytic hydrogenation of organic compounds containing carbonyl groups has been extensively studied and widely used in industrial processes. Herein, we report the preparation of a novel nanomaterial, α-zirconium phosphate (α-ZrP) nanoplatelet-supported ruthenium nano-anadem catalyst, which possesses high selectivity in the catalytic hydrogenation of aromatic ketones. The α-ZrP nanoplatelets were prepared using a modified reflux method.
View Article and Find Full Text PDFThis report describes the implementation of a 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY) dye into the ligand framework of a Rh-based catalyst. The redox-active nature of the BODIPY dye is utilized to generate a catalyst that is capable of exhibiting redox-switchable catalytic behavior for the hydroboration of alkenes through a BODIPY-based reduction.
View Article and Find Full Text PDFThis letter describes the one-step conversion of heteroatom-substituted potassium organotrifluoroborates (KRBF) to metal monoorganoborohydrides (MRBH) using alkali metal aluminum hydrides. The method tolerates a variety of functional groups, expanding MRBH diversity. Hydride removal with MeSiCl in the presence of dimethylaminopyridine (DMAP) affords the organoborane·DMAP (RBH·DMAP) adducts.
View Article and Find Full Text PDFFluorescent dyes have been widely utilized as chemical sensors and in photodynamic therapy, but exploitation of their redox-active nature in chemical reactions has remained mostly unexplored. This report describes the isolation of a 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY)-based radical. The redox-active nature of the BODIPY compound can be utilized in combination with a guanidine center, the basicity of which can be manipulated by greater than 14 pK units, to promote the conversion of protons and electrons into H-atoms for transfer to substrate molecules.
View Article and Find Full Text PDF