Publications by authors named "Breitinger H"

Antimicrobial peptides (AMPs) are promising alternatives to conventional antibiotics and chemotherapy in the treatment of multidrug-resistant pathogens and drug-resistant cancers. Clinical application of AMPs is limited due to low stability and inefficient transport. Encapsulation in nanocarriers may improve their therapeutic potential.

View Article and Find Full Text PDF

Background: Despite its widespread uses in Chinese and European medicine, Styphnolobium japonicum (Chinese scholar tree, formerly Sophora japonicum) has not been extensively investigated for its potential to protect against neurodegenerative processes and to promote resistance to oxidative stress. In this study, we evaluated the neuroprotective activities of a hydroalcoholic extract from Chinese scholar tree fruits that could be possibly linked to its antioxidant properties using Caenorhabditis elegans as a well-established in vivo model.

Methods: Survival rate in mutant daf-16 and skn-1 worms, stressed by the pro-oxidant juglone and treated with the extract, was tested.

View Article and Find Full Text PDF

Channelopathies arise from ion channel dysfunction. Successful treatment entails delivery of functional ion channels to replace dysfunctional ones. Glycine receptor (GlyR)-rich cell membrane fragments (CMF) were previously delivered to target cell membranes using fusogenic liposomes.

View Article and Find Full Text PDF

Background: SARS-CoV-2 has caused a worldwide pandemic since December 2019 and the search for pharmaceutical targets against COVID-19 remains an important challenge. Here, we studied the envelope protein E of SARS-CoV and SARS-CoV-2, a highly conserved 75-76 amino acid viroporin that is crucial for virus assembly and release. E protein channels were recombinantly expressed in HEK293 cells, a membrane-directing signal peptide ensured transfer to the plasma membrane.

View Article and Find Full Text PDF

Reduced cell surface expression or the malfunctioning of ion channels gives rise to a group of disorders known as channelopathies. To treat the underlying cause, the delivery and/or expression of a functional ion channel into the cell membrane of the cell of interest is required. Unfortunately, for most channelopathies, current treatment options are only symptomatic and treatments that rectify the underlying damage are still lacking.

View Article and Find Full Text PDF

Pain, although unpleasant, is an essential warning mechanism against injury and damage of the organism. An intricate network of specialised sensors and transmission systems contributes to reception, transmission and central sensitization of pain. Here, we briefly introduce some of the main aspects of pain signal transmission, including nociceptors and nociceptive signals, mechanisms of inflammatory and neuropathic pain, and the situation of diabetes-associated neuropathic pain.

View Article and Find Full Text PDF

SARS-CoV-2 has been responsible for the major worldwide pandemic of COVID-19. Despite the enormous success of vaccination campaigns, virus infections are still prevalent and effective antiviral therapies are urgently needed. Viroporins are essential for virus replication and release, and are thus promising therapeutic targets.

View Article and Find Full Text PDF

Viroporins are indispensable for viral replication. As intracellular ion channels they disturb pH gradients of organelles and allow Ca flux across ER membranes. Viroporins interact with numerous intracellular proteins and pathways and can trigger inflammatory responses.

View Article and Find Full Text PDF

Severe acute respiratory syndrome coronavirus (SARS-CoV), an enveloped single-stranded positive-sense RNA virus, is a member of the genus , family Coronaviridae. The SARS-CoV envelope protein E is a small (∼8.4 kDa) channel-forming membrane protein whose sequence is highly conserved between SARS-CoV and SARS-CoV-2.

View Article and Find Full Text PDF

Channelopathies are disorders caused by reduced expression or impaired function of ion channels. Most current therapies rely on symptomatic treatment without addressing the underlying cause. We have recently established proof of principle for delivery of functional ion channel protein into the membrane of target cells using fusogenic liposomes incorporating glycine receptor (GlyR)-containing cell membrane fragments (CMF) that were formulated by thin film hydration.

View Article and Find Full Text PDF

Introduction: The inhibitory glycine receptor (GlyR), a mediator of fast synaptic inhibition, is located and held at neuronal synapses through the anchoring proteins gephyrin and collybistin. Stable localization of neurotransmitter receptors is essential for synaptic function. In case of GlyRs, only beta subunits were known until now to mediate synaptic anchoring.

View Article and Find Full Text PDF

The inhibitory glycine receptor (GlyR) is a principal mediator of fast synaptic inhibition in mammalian spinal cord, brainstem, and higher brain centres. Flavonoids are secondary plant metabolites that exhibit many beneficial physiological effects, including modulatory action on neuronal receptors. Using whole-cell current recordings from recombinant human 1 GlyRs, expressed in HEK293 cells, we compared the flavonols kaempferol and quercetin, the flavanone naringenin, the flavones apigenin and nobiletin, the isoflavone genistein, and two gingerols, 6-gingerol and 8-gingerol for their modulation of receptor currents.

View Article and Find Full Text PDF

The p7 viroporin of the hepatitis C virus (HCV) forms an intracellular proton-conducting transmembrane channel in virus-infected cells, shunting the pH of intracellular compartments and thus helping virus assembly and release. This activity is essential for virus infectivity, making viroporins an attractive target for drug development. The protein sequence and drug sensitivity of p7 vary between the seven major genotypes of the hepatitis C virus, but the essential channel activity is preserved.

View Article and Find Full Text PDF

Strychnine is the prototypic antagonist of glycine receptors, a family of pentameric ligand-gated ion channels. Recent high-resolution structures of homomeric glycine receptors have confirmed the presence of five orthosteric binding sites located in the extracellular subunit interfaces of the receptor complex that are targeted by strychnine. Here, we report the synthesis and extensive pharmacological evaluation of bivalent ligands composed of two strychnine pharmacophores connected by appropriate spacers optimized toward simultaneous binding to two adjacent orthosteric sites of homomeric α1 glycine receptors.

View Article and Find Full Text PDF

Introduction: Nanoparticles (NPs), upon introduction to the biological systems, become wrapped by serum and cellular proteins constituting the protein corona (PC). This PC contributes largely to the NPs' interaction with the biological systems and their subsequent functions. On the one hand, PC can decrease the efficiency of targeting by directing the NPs to the reticuloendothelial system (RES) or by masking the active targeting moieties and decreasing their ability to bind to their target receptors.

View Article and Find Full Text PDF

Introduction: Protein corona (PC) deposition on nanoparticles (NPs) in biological systems contributes to a great extent to NPs' fates; their targeting potential, the interaction with different biological systems and the subsequent functions. PC - when properly tuned - can serve as a potential avenue for optimization of NPs' use in cancer therapy.

Methods: Poly-lactic co-glycolic acid (PLGA)-based NPs exhibiting different physicochemical properties were fabricated and characterized.

View Article and Find Full Text PDF

The inhibitory glycine receptor (GlyR) mediates synaptic inhibition in the spinal cord, brain stem, and other regions of the mammalian central nervous system. Glucose was shown to potentiate α1 GlyRs by interacting with K143. Here, additional amino acids involved in glucose modulation were identified using a structure-based approach of site-directed mutagenesis followed by whole-cell patch-clamp analysis.

View Article and Find Full Text PDF

The inhibitory glycine receptor (GlyR) is a key mediator of synaptic signalling in spinal cord, brain stem, and higher centres of the central nervous system. We examined the glycinergic activity of sarcophine (SN), a marine terpenoid known for its various biological activities, and its trans-diol derivative (7S, 8R)-dihydroxy-deepoxysarcophine (DSN). SN was isolated from the Red Sea soft coral Sacrophyton glaucum, DSN was semisynthesized by hydrolysis of the epoxide ring.

View Article and Find Full Text PDF

The inhibitory glycine receptor is a member of the Cys-loop superfamily of ligand-gated ion channels. It is the principal mediator of rapid synaptic inhibition in the spinal cord and brainstem and plays an important role in the modulation of higher brain functions including vision, hearing, and pain signaling. Glycine receptor function is controlled by only a few agonists, while the number of antagonists and positive or biphasic modulators is steadily increasing.

View Article and Find Full Text PDF

Glycine receptors (GlyRs) are the major mediators of fast synaptic inhibition in the adult human spinal cord and brainstem. Hereditary mutations to GlyRs can lead to the rare, but potentially fatal, neuromotor disorder hyperekplexia. Most mutations located in the large intracellular domain (TM3-4 loop) of the GlyRα1 impair surface expression levels of the receptors.

View Article and Find Full Text PDF

Viroporins are virus encoded proteins that alter membrane permeability and can trigger subsequent cellular signals. Oligomerization of viroporin subunits results in formation of a hydrophilic pore which facilitates ion transport across host cell membranes. These viral channel proteins may be involved in different stages of the virus infection cycle.

View Article and Find Full Text PDF

The inhibitory glycine receptor (GlyR) plays an important role in rapid synaptic inhibition in mammalian spinal cord, brainstem, higher brain centers, and is involved in transmission of nociceptive signals. Glucose and related mono- and disaccharides potentiate currents mediated by recombinant α1, α1-β, and α3 GlyRs. Here, we confirmed the specific potentiation of α3 GlyR signaling by glucose through: (i) patch-clamp electrophysiology on recombinant receptors; and (ii) by verifying data in a mouse model .

View Article and Find Full Text PDF

Defects in transmembrane ion channels underlie many disorders, commonly known as channelopathies. Current therapies are mostly symptomatic and do not treat the underlying cause. Here, we demonstrate the delivery of functional ion channels in protein form into the membrane of target cells using fusogenic proteoliposomes.

View Article and Find Full Text PDF

(11)-11-Aminostrychnine () and -[(11)-strychnine-11-yl]propionamide () were synthesized and characterized as antagonists of homomeric α1 and heteromeric α1β glycine receptors in a functional fluorescence-based assay and a patch-clamp assay and in radioligand binding studies. The absolute configuration at C-11 of was determined based on vicinal coupling constants and NOESY data. Docking experiments to the orthosteric binding site of the α3 glycine receptor showed a binding mode of compound analogous to that of strychnine, explaining its high antagonistic potency.

View Article and Find Full Text PDF

Roots of kava (Piper methysticum) plant are used in almost all Pacific Ocean cultures to prepare a drink with sedative, anesthetic and euphoric properties. One of the main active ingredients of the extract are kava lactones. Here, kava root CO2 extract and three kavalactones, DL-kavain, dihydrokavain and yangonin (isolated from whole extract by column chromatography) were tested for their inhibitory action on recombinant homomeric human α1 glycine receptors expressed in HEK293 cells.

View Article and Find Full Text PDF