L-DOPA, also known as Levodopa or L-3,4-dihydroxyphenylalanine, is synthesised in plants from the amino acid tyrosine, through oxidation. Conversion of tyrosine to L-DOPA constitues the first step of betalain biosynthesis in plants. Recently, the gene responsible for this step was identified in beetroot, , that is the source of yellow and purple betalain pigments.
View Article and Find Full Text PDFL-DOPA, also known as Levodopa or L-3,4-dihydroxyphenylalanine, is a non-standard amino acid, and the gold standard drug for the treatment for Parkinson's Disease (PD). Recently, a gene encoding the enzyme that is responsible for its synthesis, as a precursor of the coloured pigment group betalains, was identified in beetroot, BvCYP76AD6. We have engineered tomato fruit enriched in L-DOPA through overexpression of BvCYP76AD6 in a fruit specific manner.
View Article and Find Full Text PDFBackground: Flavonoids are produced in all flowering plants in a wide range of tissues including in berry fruits. These compounds are of considerable interest for their biological activities, health benefits and potential pharmacological applications. However, transcriptomic and genomic resources for wild and cultivated berry fruit species are often limited, despite their value in underpinning the in-depth study of metabolic pathways, fruit ripening as well as in the identification of genotypes rich in bioactive compounds.
View Article and Find Full Text PDF1-MCP (1-methylcyclopropene) is a simple synthetic hydrocarbon molecule that interacts with the ethylene receptor and inhibits the response of fruit or plant to ethylene. 1-MCP has opened new opportunities in handling harvested crops and serves as a powerful tool to learn about plant response to ethylene (Watkins and Miller, 2006). 1-MCP is manufactured by Agrofresh and known by its commercial name Smartfresh.
View Article and Find Full Text PDFCurrent innovations in mass-spectrometry-based technologies allow deep coverage of protein expression. Despite its immense value and in contrast to transcriptomics, only a handful of studies in crop plants engaged with global proteome assays. Here, we present large-scale shotgun proteomics profiling of tomato fruit across two key tissues and five developmental stages.
View Article and Find Full Text PDFThe involvement of ethylene in fruit ripening is well documented, though knowledge regarding the crosstalk between ethylene and other hormones in ripening is lacking. We discovered that AUXIN RESPONSE FACTOR 2A (ARF2A), a recognized auxin signaling component, functions in the control of ripening. ARF2A expression is ripening regulated and reduced in the rin, nor and nr ripening mutants.
View Article and Find Full Text PDFEthylene is the main regulator of climacteric fruit ripening, by contrast the putative role of other phytohormones in this process remains poorly understood. The present study brings auxin signaling components into the mechanism regulating tomato fruit ripening through the functional characterization of Auxin Response Factor2 (SlARF2) which encodes a downstream component of auxin signaling. Two paralogs, SlARF2A and SlARF2B, are found in the tomato genome, both displaying a marked ripening-associated expression but distinct responsiveness to ethylene and auxin.
View Article and Find Full Text PDFBetalains are tyrosine-derived red-violet and yellow pigments, found in plants only of the Caryophyllales order. Although much progress has been made in recent years in the understanding of the betalain biosynthetic process, many questions remain open with regards to several of the proposed steps in the pathway. Most conspicuous by its absence is the characterization of the first committed step in the pathway, namely the 3-hydroxylation of tyrosine to form l-3,4-dihydroxyphenylalanine (l-DOPA).
View Article and Find Full Text PDFAfter fertilization, the expanding carpel of fleshy fruit goes through a phase change to ripening. Although the role of ethylene signalling in mediating climacteric ripening has been established, knowledge regarding the regulation of ethylene biosynthesis and its association with fruit developmental programs is still lacking. A functional screen of tomato transcription factors showed that silencing of the TOMATO AGAMOUS-LIKE 1 (TAGL1) MADS box gene results in altered fruit pigmentation.
View Article and Find Full Text PDFDuring embryogenesis, organ development is dependent upon maintaining appropriate progenitor cell commitment. Synovial joints develop from a pool of progenitor cells that differentiate into various cell types constituting the mature joint. The involvement of the musculature in joint formation has long been recognized.
View Article and Find Full Text PDF