Publications by authors named "Breitbach K"

is a soil-dwelling bacterium able to survive not only under adverse environmental conditions, but also within various hosts which can lead to the disease melioidosis. The capability of to adapt to environmental changes is facilitated by the large number of regulatory proteins encoded by its genome. Among them are more than 60 uncharacterized LysR-type transcriptional regulators (LTTRs).

View Article and Find Full Text PDF

Caspase-6 is a member of the executioner caspases and known to play a role in innate and adaptive immune processes. However, its role in infectious diseases has rarely been addressed yet. We here examined the impact of caspase-6 in an in vivo infection model using the Gram-negative rod Burkholderia pseudomallei, causing the infectious disease melioidosis that is endemic in tropical and subtropical areas around the world.

View Article and Find Full Text PDF

Aggregatibacter actinomycetemcomitans is a Gram-negative commensal bacterium of the oral cavity which has been associated with the pathogenesis of periodontitis with severe alveolar bone destruction. The role of host factors such as reactive oxygen and nitrogen intermediates in periodontal A. actinomycetemcomitans infection and progression to periodontitis is still ill-defined.

View Article and Find Full Text PDF

Unlabelled: Macrophages are essential components of the innate immune system and crucial for pathogen elimination in early stages of infection. We previously observed that bone marrow-derived macrophages (BMMs) from C57BL/6 mice exhibited increased killing activity against Burkholderia pseudomallei compared to BMMs from BALB/c mice. This effect was particularly pronounced when cells were treated with IFN-γ.

View Article and Find Full Text PDF

The cytosolic pathogen Burkholderia pseudomallei and causative agent of melioidosis has been shown to regulate IL-1β and IL-18 production through NOD-like receptor NLRP3 and pyroptosis via NLRC4. Downstream signalling pathways of those receptors and other cell death mechanisms induced during B. pseudomallei infection have not been addressed so far in detail.

View Article and Find Full Text PDF

Burkholderia pseudomallei is a Gram-negative rod and the causative agent of melioidosis, an emerging infectious disease of tropical and subtropical areas worldwide. B. pseudomallei harbors a remarkable number of virulence factors, including six type VI secretion systems (T6SS).

View Article and Find Full Text PDF

Background: Burkholderia pseudomallei infection (melioidosis) is an important cause of community-acquired Gram-negative sepsis in Northeast Thailand, where it is associated with a ~40% mortality rate despite antimicrobial chemotherapy. We showed in a previous cohort study that patients taking glyburide ( = glibenclamide) prior to admission have lower mortality and attenuated inflammatory responses compared to patients not taking glyburide. We sought to define the mechanism underlying this observation in a murine model of melioidosis.

View Article and Find Full Text PDF

Objectives: To determine the prevalence of extended-spectrum β-lactamase (ESBL) production in Enterobacteriaceae in retail chicken meat in Germany.

Methods: A total of 399 chicken meat samples from nine supermarket chains, four organic food stores and one butcher's shop in two geographically distinct regions (Berlin and Greifswald) were screened for ESBL production using selective agar. Phenotypic ESBL isolates were tested for bla(TEM), bla(CTX-M) and bla(SHV) genes using PCR and DNA sequencing.

View Article and Find Full Text PDF

The Gram-negative facultative intracellular rod Burkholderia pseudomallei causes melioidosis, an infectious disease with a wide range of clinical presentations. Among the observed visceral abscesses, the liver is commonly affected. However, neither this organotropism of B.

View Article and Find Full Text PDF

Burkholderia pseudomallei is a facultative intracellular bacterial pathogen causing melioidosis, an often fatal infectious disease that is endemic in several tropical and subtropical areas around the world. We previously described a Ptk2 cell-based plaque assay screening system of B. pseudomallei transposon mutants that led to the identification of several novel virulence determinants.

View Article and Find Full Text PDF

Peroxiredoxin 6 (Prx 6) is a bifunctional enzyme with both glutathione peroxidase and acidic Ca(2+)-independent phospholipase A(2) activities. We have recently shown that exposure of murine bone marrow-derived macrophages to LPS and IFN-γ leads to induction of COX-2 expression and secretion of PGE(2), up-regulating Prx 6 mRNA levels. This study was designed to investigate various prostaglandins (PGs) for their ability to induce gene expression of Prxs, in particular Prx 6, and to determine the underlying regulatory mechanisms.

View Article and Find Full Text PDF

Staphylococcus aureus is a pathogen that often causes severe nosocomial infections including pneumonia. The present study was designed to examine innate phagocyte mediated immune mechanisms using a previously described murine S. aureus Newman pneumonia model.

View Article and Find Full Text PDF

Background: Burkholderia pseudomallei is the causative agent of melioidosis, an emerging bacterial infectious disease in tropical and subtropical areas. We recently showed that NADPH oxidase but not nitric oxide (NO) contributes to resistance in innately resistant C57BL/6 mice in a B. pseudomallei respiratory infection model.

View Article and Find Full Text PDF

The gram-negative rod Burkholderia pseudomallei is the causative agent of melioidosis, a potentially fatal disease which is endemic in tropical and subtropical areas. The bacterium multiplies intracellularly within the cytosol, induces the formation of actin tails, and can spread directly from cell to cell. Recently, it has been shown that B.

View Article and Find Full Text PDF

Melioidosis is a severe infectious disease caused by the Gram-negative rod Burkholderia pseudomallei. There is currently no vaccine available. We recently generated and characterized several highly attenuated transposon mutants with defects in the intracellular life cycle of B.

View Article and Find Full Text PDF

Sporadic cases of melioidosis have been reported from Vietnam for decades, but clinical and epidemiological data for the indigenous population are still scarce. In this study, we reviewed clinical and demographic data of patients with culture-proven melioidosis diagnosed at a single large referral hospital in Hanoi between November 1997 and December 2005. We found that the clinical manifestations of melioidosis (with fatal septicaemia as the most common presentation), a high rate of underlying diseases, and a peak of cases admitted during the wet season, were similar to studies from other endemic areas.

View Article and Find Full Text PDF

Murine bone marrow derived macrophages (BMM) are valuable tools to investigate macrophage functions such as cytokine production and bactericidal activities from different strains of mice. In most studies BMM are generated and characterised using cell culture systems with fetal calf serum (FCS) as an essential supplement. Since serum contains varying amounts of undefined components influencing the maturation and polarisation process of BMM there is a need for a more standardised methodology.

View Article and Find Full Text PDF

CC chemokine receptor 4 (CCR4) and its two ligands, CCL17 and CCL22, are critically involved in different immune processes. In models of lipopolysaccharide-induced shock, CCR4-deficient (CCR4(-/-)) mice showed improved survival rates associated with attenuated proinflammatory cytokine release. Using CCR4(-/-) mice with a C57BL/6 background, this study describes for the first time the role of CCR4 in a murine model of polymicrobial abdominal sepsis, the colon ascendens stent peritonitis (CASP).

View Article and Find Full Text PDF

Infection with the soil bacterium Burkholderia pseudomallei can result in a variety of clinical outcomes, including asymptomatic infection. The initial immune defense mechanisms which might contribute to the various outcomes after environmental contact with B. pseudomallei are largely unknown.

View Article and Find Full Text PDF

The bacterial pathogen Burkholderia pseudomallei invades host cells, escapes from endocytic vesicles, multiplies intracellularly, and induces the formation of actin tails and membrane protrusions, leading to direct cell-to-cell spreading. This study was aimed at the identification of B. pseudomallei genes responsible for the different steps of this intracellular life cycle.

View Article and Find Full Text PDF

Overexpression of the multidrug resistance proteins P-glycoprotein (Pgp) and breast cancer resistance protein (BCRP) results in treatment failure of many malignancies including ovarian cancer. Dual inhibition of Pgp and BCRP may restore the sensitivity of resistant cells to anticancer drugs. We report the synthesis and characterization of a novel anthranilic-acid based Pgp and BCRP modulator, WK-X-34.

View Article and Find Full Text PDF

The facultative intracellular bacterium Burkholderia pseudomallei induces actin rearrangement within infected host cells leading to formation of actin tails and membrane protrusions. To investigate the underlying mechanism we analysed the contribution of cytoskeletal proteins to B. pseudomallei-induced actin tail assembly.

View Article and Find Full Text PDF

The major advantages of using the baculovirus-insect cell system for recombinant protein production are its ability to produce large amounts of recombinant proteins and its ability to provide eucaryotic modifications, such as glycosylation. However, the glycans linked to recombinant glycoproteins produced by this system typically differ from those found on native mammalian products. This is an important problem because glycans on mammalian glycoproteins can influence their functions in many different ways.

View Article and Find Full Text PDF