Publications by authors named "Brehelin M"

We recently reported that most of the Drosophila species of the obscura group were unable to mount cellular capsules and no lamellocyte was ever found in the hemolymph of any of the tested species. Only three species were able to encapsulate, despite lacking lamellocytes. Their encapsulation ability was always associated with the presence of an unpreviously described kind of capsule-forming immunocytes designated as "atypical hemocytes".

View Article and Find Full Text PDF
Article Synopsis
  • Photorhabdus asymbiotica is a type of bacteria that can infect both insects and humans, making it different from other bacteria in its genus.
  • This bacterium has been found in clinical samples, indicating its ability to cause infections in humans.
  • Recent research on its genetics and interactions with human cells is helping scientists understand how it adapts to living in the human body.
View Article and Find Full Text PDF

Background: X-tox proteins are a family of immune-related proteins only found in Lepidoptera and characterized by imperfectly conserved tandem repeats of several defensin-like motifs. Previous phylogenetic analysis of X-tox genes supported the hypothesis that X-tox have evolved from defensins in a lineage-specific gene evolution restricted to Lepidoptera. In this paper, we performed a protein study in which we asked whether X-tox proteins have conserved the antimicrobial functions of their ancestral defensins and have evolved as defensin reservoirs.

View Article and Find Full Text PDF

Photorhabdus species are gram-negative entomopathogenic bacteria of the family Enterobacteriaceae. Among the different members of the genus, one species, Photorhabdus asymbiotica, is a pathogen of both insects and humans. The pathogenicity mechanisms of this bacterium are unknown.

View Article and Find Full Text PDF

The disturbance of plasma membrane carbohydrates and of lipopolysaccharide (LPS) ligands in relation to cytoskeletal transformations of haemocytes has been investigated after chronic exposure of pond snails (Lymnaea stagnalis) to the peroxidizing toxicant fomesafen. Neither of the two lectins used (concanavalin A and wheat germ agglutinin) showed any binding modification after incubation of the snails in the presence of the toxicant. However, after exposure of the snails to fomesafen, a clear and persistent reduction in LPS labelling of haemocytes occurred.

View Article and Find Full Text PDF

We report here the isolation in Spodoptera frugiperda (Lepidoptera) of an immune-related protein (hereafter named Spod-11-tox), characterized by imperfectly conserved tandem repeats of 11 cysteine-stabilized alpha beta motifs (CS-alphabeta), the structural scaffold characteristic of invertebrate defensins and scorpion toxins. Spod-11-tox orthologs were only found in Lepidopteran species, suggesting that this new protein family (named X-tox) is specific to this insect order. Moreover, phylogenetic analysis suggests that X-tox proteins represent a new class of proteins restricted to Lepidoptera and likely derived from Lepidopteran defensins.

View Article and Find Full Text PDF

Xenorhabdus nematophila, a member of the Enterobacteriaceae, kills many species of insects by strongly depressing the immune system and colonizing the entire body. A peptide cytotoxin has been purified from X. nematophila broth growth, and the cytolytic effect on insect immunocytes and hemolytic effect on mammalian red blood cells of this toxin have been described (Ribeiro, C.

View Article and Find Full Text PDF

Classification of insect larvae circulating haemocytes is the subject of controversy, and the terminology used to designate each cellular type is often different from one species to another. However, a survey of the literature on insect haemocytes suggests that there are resemblances for most of the cell types and functions, in different insect species. In this review paper, we compare the structure and functions of circulating haemocytes in those insect species that are, by far, the most often used species for insect physiology studies, i.

View Article and Find Full Text PDF

Haemocytes are the main immunocompetent cells in insect cellular immune reactions. Here, we show that in Spodoptera littoralis, granular haemocytes are the primary phagocyte haemocytes, both in vivo and in vitro. The "trigger" and "zipper" modes of engulfment known in mammal macrophages are active, in vivo, in S.

View Article and Find Full Text PDF

Photorhabdus is an entomopathogenic bacterium belonging to the Enterobacteriaceae. The genome of the TT01 strain of Photorhabdus luminescens was recently sequenced and a large number of toxin-encoding genes were found. Genomic analysis predicted the presence on the chromosome of genes encoding a type three secretion system (TTSS), the main role of which is the delivery of effector proteins directly into eukaryotic host cells.

View Article and Find Full Text PDF

Bacteria of the genus Xenorhabdus are mutually associated with entomopathogenic nematodes of the genus Steinernema and are pathogenic to a broad spectrum of insects. The nematodes act as vectors, transmitting the bacteria to insect larvae, which die within a few days of infection. We characterized the early stages of bacterial infection in the insects by constructing a constitutive green fluorescent protein (GFP)-labeled Xenorhabdus nematophila strain.

View Article and Find Full Text PDF

During in vitro incubations, the nematobacterial complex Steinernema carpocapsae-Xenorhabdus nematophilus produces different factors having toxic activities in vitro towards haemocytes, the insect cells responsible for cellular immune defense reactions. Among others, two effects were evident on haemocyte monolayers; one of them was a cytotoxic activity while the other was an unsticking effect. The factors responsible for cytotoxic activity and unsticking effect, were separated from each other by a single chromatography on anion exchange column.

View Article and Find Full Text PDF

Xenorhabdus nematophila and Photorhabdus luminescens are two related enterobacteriaceae studied for their use in biological control and for synthesis of original virulence factors and new kinds of antibiotics. X. nematophila broth growth exhibits different cytotoxic activities on insect (Spodoptera littoralis, lepidoptera) immunocytes (hemocytes).

View Article and Find Full Text PDF

Xenorhabdus spp. and Photorhabdus spp. are major insect bacterial pathogens symbiotically associated with nematodes.

View Article and Find Full Text PDF

Bacillus thuringiensis has been widely used for 40 years as a safe biopesticide for controlling agricultural pests and mosquitoes because it produces insecticidal crystal proteins. However, spores have also been shown to contribute to overall entomopathogenicity. Here, the opportunistic properties of acrystalliferous B.

View Article and Find Full Text PDF

Two strains of Drosophila melanogaster (resistant and susceptible) were parasitized by a virulent or avirulent strain of the parasitoid wasp Leptopilina boulardi. The success of encapsulation depends on both the genetic status of the host strain and the genetic status of the parasitoid strain: the immune cellular reaction (capsule) is observed only with the resistant strain-avirulent strain combination. The total numbers of host haemocytes increased in all 4 combinations, suggesting that an immune reaction was triggered in all hosts.

View Article and Find Full Text PDF

A low molecular weight protease inhibitor peptide found in ovaries of the desert locust Schistocerca gregaria (SGPI-2), was purified from plasma of the same locust and sequenced. It was named SGCI. It was found active towards chymotrypsin and human leukocyte elastase.

View Article and Find Full Text PDF

In insects the main cellular defence reactions are phagocytosis and encapsulation of foreign bodies. Free cells of haemolymph called haemocytes are the effectors of these reactions. They are achieved under the control of humoral factors of the plasma or of the serum.

View Article and Find Full Text PDF

Incubation of plasma of the locust Locusta migratoria, with laminarin induced the precipitation of two major proteins with molecular masses of about 260,000 (P260) and 85,000 Da (P85). This precipitation was not observed when other polysaccharides, such as curdlan, dextran, chitin, cellulose or mannan were used. P260 and P85 were purified to homogeneity by a single step on heparin-sepharose chromatography.

View Article and Find Full Text PDF

Dopachrome Conversion Factor (DCF) was found in the plasma of the locust Locusta migratoria. It has an apparent molecular mass of 85,000. Its K(m) was 0.

View Article and Find Full Text PDF

The Eucoilid parasitoid Leptopilina boulardi is able to suppress its host Drosophila melanogaster immune reaction. Some strains, however, are non-immune suppressive to that host. Virus-like particles (VLPs) responsible for the immune suppressive ability were investigated in different strains of L.

View Article and Find Full Text PDF

Eggs of an immune suppressive strain (= virulent) of the parasitoid Leptopilina boulardi are encapsulated neither in resistant nor in susceptible strains of Drosophila melanogaster but are encapsulated in Drosophila yakuba. Eggs of a nonimmune suppressive strain (= avirulent) of the same parasitoid are encapsulated in a resistant strain of D. melanogaster and in D.

View Article and Find Full Text PDF

Two protease inhibitors were isolated from the plasma of Locusta migratoria and sequenced. They were 35 and 36 amino acids long and revealed very little similitude for the protease inhibitors isolated from other arthropods. They inhibit the proPhenoloxidase Phenoloxidase proteolytic activation cascade in hemocyte extracts of the same insect.

View Article and Find Full Text PDF

Induction by mitomycin or high-temperature treatment resulted in the production of bacteriocins and phages in both phases of Xenorhabdus nematophilus A24, indicating lysogeny. Phage DNA purified from X. nematophilus A24 hybridized to several fragments of DraI-digested A24 chromosomal DNA, confirming that the phage genome was incorporated into the bacterial chromosome.

View Article and Find Full Text PDF