Microencapsulation offers a unique potential for high cell density, high productivity mammalian cell cultures. However, for successful exploitation there is the need for microcapsules of defined size, properties and mechanical stability. Four types of alginate/poly-L: -Lysine microcapsules, containing recombinant CHO cells, have been investigated: (a) 800 mum liquid core microcapsules, (b) 500 mum liquid core microcapsules, (c) 880 mum liquid core microcapsules with a double PLL membrane and (d) 740 mum semi-liquid core microcapsules.
View Article and Find Full Text PDFThis paper describes the development of a new method to obtain aqueous-core microcapsules from organic-core capsules. The direct production of microcapsules, using tripropionin as organic material, followed by the hydrolysis of the core by a lipase was investigated. The enzymatic study showed that the enzyme obeyed a Michaelis-Menten mechanism and conditions for optimal activity were pH 7.
View Article and Find Full Text PDFDue to residual oil retained within it, rapeseed press-cake has been shown to be effective for the removal of atrazine from water through an absorption mechanism. However, it is difficult to put this into practice due to the hygroscopic nature of the press-cake resulting in considerable swelling, together with the formation of a thick paste which hinders phase separation. In order to overcome this, press-cake has been immobilized in an alginate matrix.
View Article and Find Full Text PDFA study of alginate lyase was carried out to determine if this enzyme could be used to remove alginate present in the core of alginate/poly-L-lysine (AG/PLL) microcapsules in order to maximize cell growth and colonization. A complete kinetic study was undertaken, which indicated an optimal activity of the enzyme at pH 7-8, 50 degrees C, in the presence of Ca2+. The buffer, not the ionic strength, influenced the alginate degradation rate.
View Article and Find Full Text PDFA new approach combining electrostatic and covalent bonds was established for the formation of resistant capsules with long-term stability under physiological conditions. Three kinds of interactions were generated in the same membrane: (1) electrostatic bonds between alginate and poly-L-lysine (PLL), (2) covalent bonds (amides) between propylene-glycol-alginate (PGA) and PLL, and (3) covalent bonds (amides) between BSA and PGA. Down-scaling of the capsules size (< or =1 mm diameter) with a jet break-up technology was achieved by modifying the rheological properties of the polymer solution.
View Article and Find Full Text PDF