Amyloid precursor protein (APP) is directly related to Aβ amyloidosis-a hallmark of Alzheimer's disease (AD). However, the impact of environmental factors upon APP biology and Aβ amyloid pathology have not been well studied. The increased use of nanoparticles (NPs) or engineered nanomaterials (ENMs) has led to a growing body of evidence suggesting that exposure to metal/metal oxide NPs, such as FeO, CuO, and ZnO, may contribute to the pathophysiology of neurodegenerative diseases such as AD through neuroinflammation.
View Article and Find Full Text PDFAlzheimer's disease (AD) characterized by insoluble amyloid-β (Aβ) deposits, neurofibrillary tangles (NFTs), and neuronal demise. The influence of environmental and genetic factors on AD progression remains elusive, however evidence suggests biometal dyshomeostasis elicits neuronal death, neuroinflammation, and accumulated oxidative damages in AD brain. As such, three pathways have been identified that result from abnormal biometal accumulation and increased levels of reactive oxygen species (ROS) and reactive nitrogen species (RNS) in AD brain parenchyma: (1) the damage caused by direct oxidation of cellular components such as DNA and proteins; (2) the oligomerization of Aβ and NFTs, and (3) the promotion of apoptosis through NF-κB signaling pathway.
View Article and Find Full Text PDF