Publications by authors named "Breedveld S"

Article Synopsis
  • The study focuses on using deep learning to improve the speed and quality of radiation treatment planning by predicting patient-specific 3D dose distributions in real time.
  • It analyzed the impact of training dataset size and model complexity on the accuracy of dose predictions for 1250 prostate patients, using various sizes of neural network models.
  • Results showed that more training data increases prediction accuracy, with the most effective model achieving low prediction errors in dose distribution despite not reaching a plateau in accuracy at 1000 training patients, indicating potential for further optimization.
View Article and Find Full Text PDF
Article Synopsis
  • Intensity modulated proton therapy (IMPT) faces challenges from patient setup and proton range uncertainties, leading to longer planning times with robust optimization methods.
  • A deep learning (DL) model was developed to predict dose distributions in various error scenarios for head and neck cancer patients, effectively evaluating plan robustness.
  • The model demonstrated impressive accuracy, aligning closely with ground truth plans for most patients, and was able to predict full 3D dose distributions quickly, making it a viable option for enhancing IMPT treatment planning.
View Article and Find Full Text PDF

Introduction: In head-and-neck IMPT, trigger-based offline plan adaptation (Offline) is often used. Our goal was to compare this to four alternative adaptive strategies for dosimetry, workload and treatment time, considering also foreseen further technological advancements, including anticipated automation.

Materials And Methods: Alternative strategies included weekly offline re-planning (Offline), daily plan selection from a library (Library and Library) and a fast, approximate daily online re-optimization approach (Online).

View Article and Find Full Text PDF

Objective: In intensity-modulated proton therapy (IMPT), Bragg peaks result in steep distal dose fall-offs, while the lateral IMPT dose fall-off is often less steep than in photon therapy. High-energy pristine transmission ('shoot through') pencil beams have no Bragg peak in the patient, but show a sharp lateral penumbra at the target level. We investigated whether combining Bragg peaks with Transmission pencil beams ('IMPT&TPB') could improve head-and-neck plans by exploiting the steep lateral dose fall-off of transmission pencil beams.

View Article and Find Full Text PDF

Background And Purpose: For locally advanced non-small cell lung cancer (LA-NSCLC), intensity-modulated proton therapy (IMPT) can reduce organ at risk (OAR) doses compared to intensity-modulated radiotherapy (IMRT). Deep inspiration breath hold (DIBH) reduces OAR doses compared to free breathing (FB) in IMRT. In IMPT, differences in dose distributions and robustness between DIBH and FB are unclear.

View Article and Find Full Text PDF

Background: MR-Linac allows for daily online treatment adaptation to the observed geometry of tumor targets and organs at risk (OARs). Manual delineation for head and neck cancer (HNC) patients takes 45-75 minutes, making it unsuitable for online adaptive radiotherapy. This study aims to clinically and dosimetrically validate an in-house developed algorithm which automatically delineates the elective target volume and OARs for HNC patients in under a minute.

View Article and Find Full Text PDF

Background And Purpose: To investigate the trade-off between bone marrow sparing (BMS) and dose to organs at risk (OARs) for intensity modulated proton therapy (IMPT) for women with locally advanced cervical cancer (LACC).

Materials And Methods: Twenty LACC patients were retrospectively included. IMPT plans were created for each patient using automated treatment planning.

View Article and Find Full Text PDF

. In head-and-neck cancer intensity modulated proton therapy, adaptive radiotherapy is currently restricted to offline re-planning, mitigating the effect of slow changes in patient anatomies. Daily online adaptations can potentially improve dosimetry.

View Article and Find Full Text PDF

Purpose: Our purpose was to compare robust intensity modulated proton therapy (IMPT) plans, automatically generated with wish-list-based multicriterial optimization as implemented in Erasmus-iCycle, with manually created robust clinical IMPT plans for patients with head and neck cancer.

Methods And Materials: Thirty-three patients with head and neck cancer were retrospectively included. All patients were previously treated with a manually created IMPT plan with 7000 cGy dose prescription to the primary tumor (clinical target volume [CTV]7000) and 5425 cGy dose prescription to the bilateral elective volumes (CTV5425).

View Article and Find Full Text PDF

Intensity modulated proton therapy (IMPT) is an emerging treatment modality for cancer. However, treatment planning for IMPT is labour-intensive and time-consuming. We have developed a novel approach for multi-criteria optimisation (MCO) of robust IMPT plans (SISS-MCO) that is fully automated and fast, and we compare it for head and neck, cervix, and prostate tumours to a previously published method for automated robust MCO (IPBR-MCO, van de Water 2013).

View Article and Find Full Text PDF

Background: Knowledge-based planning (KBP) is a method for automated radiotherapy treatment planning where appropriate optimization objectives for new patients are predicted based on a library of training plans. KBP can save time and improve organ at-risk sparing and inter-patient consistency compared to manual planning, but its performance depends on the quality of the training plans. We used another system for automated planning, which generates multi-criteria optimized (MCO) plans based on a wish list, to create training plans for the KBP model, to allow seamless integration of knowledge from a new system into clinical routine.

View Article and Find Full Text PDF

. In conventional radiotherapy, a single treatment plan is generated pre-treatment, and delivered in daily fractions. In this study, we propose to generate different treatment plans for all fractions ('Per-fraction' planning) to reduce cumulative organs at risk (OAR) doses.

View Article and Find Full Text PDF

Background And Purpose: To quantify the increase in bladder and rectum dose of a bone marrow sparing (BMS) VMAT strategy for primary treatment of locally advanced cervical cancer (LACC).

Materials And Methods: Twenty patients with stage IB-IVA cervical cancer were selected for this study. The whole Pelvic Bones (PB) was taken as substitute for bone marrow.

View Article and Find Full Text PDF

Background: Intensity Modulated Proton Therapy (IMPT) in head and neck cancer (HNC) is susceptible to anatomical changes and patient set-up inaccuracies during the radiotherapy course, which can cause discrepancies between planned and delivered dose. The discrepancies can be counteracted by adaptive replanning strategies. This article reviews the observed dosimetric impact of adaptive proton therapy (APT) and the timing to perform a plan adaptation in IMPT in HNC.

View Article and Find Full Text PDF

Background And Purpose: In intensity modulated proton therapy (IMPT), the impact of setup errors and anatomical changes is commonly mitigated by robust optimization with population-based setup robustness (SR) settings and offline replanning. In this study we propose and evaluate an alternative approach based on daily plan selection from patient-specific pre-treatment established plan libraries (PLs). Clinical implementation of the PL strategy would be rather straightforward compared to daily online re-planning.

View Article and Find Full Text PDF

Background: State-of-the-art radiotherapy of locally advanced non-small cell lung cancer (LA-NSCLC) is performed with intensity-modulation during free breathing (FB). Previous studies have found encouraging geometric reproducibility and patient compliance of deep inspiration breath hold (DIBH) radiotherapy for LA-NSCLC patients. However, dosimetric comparisons of DIBH with FB are sparse, and DIBH is not routinely used for this patient group.

View Article and Find Full Text PDF

Purpose: FLASH dose rates >40 Gy/s are readily available in proton therapy (PT) with cyclotron-accelerated beams and pencil-beam scanning (PBS). The PBS delivery pattern will affect the local dose rate, as quantified by the PBS dose rate (PBS-DR), and therefore needs to be accounted for in FLASH-PT with PBS, but it is not yet clear how. Our aim was to optimize patient-specific scan patterns for stereotactic FLASH-PT of early-stage lung cancer and lung metastases, maximizing the volume irradiated with PBS-DR >40 Gy/s of the organs at risk voxels irradiated to >8 Gy (FLASH coverage).

View Article and Find Full Text PDF

Purpose And Objective: Besides a dose-rate threshold of 40-100 Gy/s, the FLASH effect may require a dose > 3.5-7 Gy. Even in hypofractioned treatments, with all beams delivered in each fraction (ABEF), most healthy tissue is irradiated to a lower fraction dose.

View Article and Find Full Text PDF

Purpose: Complexity in selecting optimal non-coplanar beam setups and prolonged delivery times may hamper the use of non-coplanar treatments for nasopharyngeal carcinoma (NPC). Automated multi-criterial planning with integrated beam angle optimization was used to define non-coplanar VMAT class solutions (CSs), each consisting of a coplanar arc and additional 1 or 2 fixed, non-coplanar partial arcs.

Methods: Automated planning was used to generate a coplanar VMAT plan with 5 complementary computer-optimized non-coplanar IMRT beams (VMAT+5) for each of the 20 included patients.

View Article and Find Full Text PDF

Properly selected beam angles contribute to the quality of radiotherapy treatment plans. However, the beam angle optimization (BAO) problem is difficult to solve to optimality due to its non-convex discrete nature with many local minima. In this study, we propose TBS-BAO, a novel approach for solving the BAO problem, and test it for non-coplanar robotic CyberKnife radiotherapy for prostate cancer.

View Article and Find Full Text PDF

In this study, the novel iCE radiotherapy treatment planning system (TPS) for automated multi-criterial planning with integrated beam angle optimization (BAO) was developed, and applied to optimize organ at risk (OAR) sparing and systematically investigate the impact of beam angles on radiotherapy dose in locally advanced non-small cell lung cancer (LA-NSCLC). iCE consists of an in-house, sophisticated multi-criterial optimizer with integrated BAO, coupled to a broadly used commercial TPS. The in-house optimizer performs fluence map optimization to automatically generate an intensity-modulated radiotherapy (IMRT) plan with optimal beam angles for each patient.

View Article and Find Full Text PDF

Background/purpose: Intensity-modulated proton therapy is highly sensitive to anatomical variations. A dose restoration method and a full plan adaptation method have been developed earlier, both requiring several parameter settings. This study evaluates the validity of the previously selected settings by systematically comparing them to alternatives.

View Article and Find Full Text PDF

Background: With the large-scale introduction of volumetric modulated arc therapy (VMAT), selection of optimal beam angles for coplanar static-beam IMRT has increasingly become obsolete. Due to unavailability of VMAT in current MR-linacs, the problem has re-gained importance. An application for automated IMRT treatment planning with integrated, patient-specific computer-optimization of beam angles (BAO) was used to systematically investigate computer-aided generation of beam angle class solutions (CS) for replacement of computationally expensive patient-specific BAO.

View Article and Find Full Text PDF

Purpose: To propose and validate a fully automated multicriterial treatment planning solution for a CyberKnife® equipped with an InCise 2 multileaf collimator.

Methods: The AUTO BAO plans are generated using fully automated prioritized multicriterial optimization (AUTO MCO) of pencil-beam fluence maps with integrated noncoplanar beam angle optimization (BAO), followed by MLC segment generation. Both the AUTO MCO and segmentation algorithms have been developed in-house.

View Article and Find Full Text PDF

Background And Purpose: Literature is non-conclusive regarding selection of beam configurations in radiotherapy for mediastinal lymphoma (ML) radiotherapy, and published studies are based on manual planning with its inherent limitations. In this study, coplanar and non-coplanar beam configurations were systematically compared, using a large number of automatically generated plans.

Material And Methods: An autoplanning workflow, including beam configuration optimization, was configured for young female ML patients.

View Article and Find Full Text PDF