Publications by authors named "Breeanna Urbanowicz"

Article Synopsis
  • Pectin is a complex substance in plant cell walls, crucial for breaking down in animal feed to enhance nutrient absorption.
  • Significant amounts of pectin are found in soybean meal, a common poultry feed, but its structure and the necessary enzymes for degradation are not well understood.
  • The study developed and tested various combinations of fungal enzymes, identifying 10 effective ones for breaking down soybean meal pectin, mainly from the fungus Talaromyces versatilis, and proposes a new structural model for understanding pectin in feed.
View Article and Find Full Text PDF

Various enzymes can be used to modify the structure of hemicelluloses directly in vivo or following extraction from biomass sources, such as wood and agricultural residues. Generally, these enzymes can contribute to designer hemicelluloses through four main strategies: (1) enzymatic hydrolysis such as selective removal of side groups by glycoside hydrolases (GH) and carbohydrate esterases (CE), (2) enzymatic cross-linking, for instance, the selective addition of side groups by glycosyltransferases (GT) with activated sugars, (3) enzymatic polymerization by glycosynthases (GS) with activated glycosyl donors or transglycosylation, and (4) enzymatic functionalization, particularly via oxidation by carbohydrate oxidoreductases and via amination by amine transaminases. Thus, this Perspective will first highlight enzymes that play a role in regulating the degree of polymerization and side group composition of hemicelluloses, and subsequently, it will explore enzymes that enhance cross-linking capabilities and incorporate novel chemical functionalities into saccharide structures.

View Article and Find Full Text PDF

Bacteria within the Paenibacillus genus are known to secrete a diverse array of enzymes capable of breaking down plant cell wall polysaccharides. We studied the extracellular xylanolytic activity of Paenibacillus xylanivorans and examined the complete range of secreted proteins when grown on carbohydrate-based carbon sources of increasing complexity, including wheat bran, sugar cane straw, beechwood xylan and sucrose, as control. Our data showed that the relative abundances of secreted proteins varied depending on the carbon source used.

View Article and Find Full Text PDF

Rhamnogalacturonan II (RG-II) is a structurally complex and conserved domain of the pectin present in the primary cell walls of vascular plants. Borate cross-linking of RG-II is required for plants to grow and develop normally. Mutations that alter RG-II structure also affect cross-linking and are lethal or severely impair growth.

View Article and Find Full Text PDF

As a key component in cell walls of numerous organisms ranging from green algae to higher plants, AGPs play principal roles in many biological processes such as cell-cell adhesion and regulating Ca signaling pathway as a Ca-capacitor. Consistently, AGP structures vary from species to species and from tissue to tissue. To understand the functions of AGPs, it is vital to know their structural differences relative to their location in the plant.

View Article and Find Full Text PDF

Humans have been modifying plant traits for thousands of years, first through selection (i.e., domestication) then modern breeding, and in the last 30 years, through biotechnology.

View Article and Find Full Text PDF

Glycosyl composition and linkage analyses are important first steps toward understanding the structural diversity and biological importance of polysaccharides. Failure to fully solubilize samples prior to analysis results in the generation of incomplete and poor-quality composition and linkage data by gas chromatography-mass spectrometry (GC-MS). Acidic polysaccharides also do not give accurate linkage results, because they are poorly soluble in DMSO and tend to undergo β-elimination during permethylation.

View Article and Find Full Text PDF

Switchgrass, a forage and bioenergy crop, occurs as two main ecotypes with different but overlapping ranges of adaptation. The two ecotypes differ in a range of characteristics, including flowering time. Flowering time determines the duration of vegetative development and therefore biomass accumulation, a key trait in bioenergy crops.

View Article and Find Full Text PDF
Article Synopsis
  • - The study identifies the Plasminogen-Apple-Nematode (PAN) domain in G-type lectin receptor-like kinases as crucial for suppressing immune responses in plants, which is important for various biological processes like fertilization and disease resistance.
  • - It was found that the intact PAN domain inhibits jasmonic acid and ethylene signaling, which are vital for plant defense against pathogens, whereas mutations in this domain can enhance these immune responses in models like Arabidopsis and tobacco.
  • - The research highlights that the PAN domain is necessary for certain cellular processes, such as receptor oligomerization and degradation, and shows that manipulating this domain can lead to improved plant immunity against root nematodes and other threats.
View Article and Find Full Text PDF

Glycosyltransferases (GTs) are carbohydrate-active enzymes that are encoded by the genomes of organisms spanning all domains of life. GTs catalyze glycosidic bond formation, transferring a sugar monomer from an activated donor to an acceptor substrate, often another saccharide. GTs from family 47 (GT47, PF03016) are involved in the synthesis of complex glycoproteins in mammals and insects and play a major role in the synthesis of almost every class of polysaccharide in plants, with the exception of cellulose, callose, and mixed linkage β-1,3/1,4-glucan.

View Article and Find Full Text PDF

Rhamnogalacturonan I (RGI) is a structurally complex pectic polysaccharide with a backbone of alternating rhamnose and galacturonic acid residues substituted with arabinan and galactan side chains. Galactan synthase 1 (GalS1) transfers galactose and arabinose to either extend or cap the β-1,4-galactan side chains of RGI, respectively. Here we report the structure of GalS1 from Populus trichocarpa, showing a modular protein consisting of an N-terminal domain that represents the founding member of a new family of carbohydrate-binding module, CBM95, and a C-terminal glycosyltransferase family 92 (GT92) catalytic domain that adopts a GT-A fold.

View Article and Find Full Text PDF

-Acetyl esterification is an important structural and functional feature of pectins present in the cell walls of all land plants. The amount and positions of pectin acetyl substituents varies across plant tissues and stages of development. Plant growth and response to biotic and abiotic stress are known to be significantly influenced by pectin -acetylation.

View Article and Find Full Text PDF

Plant research is hampered in several aspects by a lack of pure oligosaccharide samples that closely represent structural features of cell wall glycans. An alternative to purely chemical synthesis to access these oligosaccharides is chemo-enzymatic synthesis using glycosynthases. These enzymes enable the ligation of oligosaccharide donors, when activated for example as α-glycosyl fluorides, with suitable acceptor oligosaccharides.

View Article and Find Full Text PDF

•Xylan is an abundant carbohydrate component of plant cell walls that is vital for proper cell wall structure and vascular tissue development.•Xylan structure is known to vary between different tissues and species.•The role of xylan in the plant cell wall is to interact with cellulose, lignin, and hemicelluloses.

View Article and Find Full Text PDF

To characterize a purified rhamnogalacturonan-I (RG-I) containing both RG-I and arabinogalactan-protein (AGP) types of glycosyl residues, an AGP-specific β-1,3-galactanase that can cleave the AG backbone and release the AG sidechain was applied to this material. Carbohydrate analysis and NMR spectroscopy verified that the galactanase-released carbohydrate consists of RG-I covalently attached to the AG sidechain, proving a covalent linkage between RG-I and AGP. Size exclusion chromatography-multiangle light scattering-refractive index detection revealed that the galactanase-released RG-I has an average molecular weight of 41.

View Article and Find Full Text PDF

Xylans are a diverse family of hemicellulosic polysaccharides found in abundance within the cell walls of nearly all flowering plants. Unfortunately, naturally occurring xylans are highly heterogeneous, limiting studies of their synthesis and structure-function relationships. Here, we demonstrate that xylan synthase 1 from the charophyte alga is a powerful biocatalytic tool for the bottom-up synthesis of pure β-1,4 xylan polymers that self-assemble into microparticles in vitro.

View Article and Find Full Text PDF

Valorization of the hemicellulose fraction of plant biomass is crucial for the sustainability of lignocellulosic biorefineries. The Cellulomonas genus comprises Gram-positive Actinobacteria that degrade cellulose and other polysaccharides by secreting a complex array of enzymes. In this work, we studied the specificity and synergy of two enzymes, CsXyn10A and CsAbf62A, which were identified as highly abundant in the extracellular proteome of Cellulomonas sp.

View Article and Find Full Text PDF

Xylan O-acetyltransferase 1 (XOAT1) is involved in O-acetylating the backbone of hemicellulose xylan. Recent structural analysis of XOAT1 showed two unequal lobes forming a cleft that is predicted to accommodate and position xylan acceptors into proximity with the catalytic triad. Here, we used docking and molecular dynamics simulations to investigate the optimal orientation of xylan in the binding cleft of XOAT1 and identify putative key residues (Gln445 and Arg444 on Minor lobe & Asn312, Met311 and Asp403 on Major lobe) involved in substrate interactions.

View Article and Find Full Text PDF

Background: In plants, a large diversity of polysaccharides comprise the cell wall. Each major type of plant cell wall polysaccharide, including cellulose, hemicellulose, and pectin, has distinct structures and functions that contribute to wall mechanics and influence plant morphogenesis. In recent years, pectin valorization has attracted much attention due to its expanding roles in biomass deconstruction, food and material science, and environmental remediation.

View Article and Find Full Text PDF

The rapid expansion of genome sequence data is increasing the discovery of protein-coding genes across all domains of life. Annotating these genes with reliable functional information is necessary to understand evolution, to define the full biochemical space accessed by nature, and to identify target genes for biotechnology improvements. The majority of proteins are annotated based on sequence conservation with no specific biological, biochemical, genetic, or cellular function identified.

View Article and Find Full Text PDF

The bulk of plant biomass is comprised of plant cell walls, which are complex polymeric networks, composed of diverse polysaccharides, proteins, polyphenolics, and hydroxyproline-rich glycoproteins (HRGPs). Glycosyltransferases (GTs) work together to synthesize the saccharide components of the plant cell wall. The fucosyltransferases (FUTs), FUT4, and FUT6, are members of the plant-specific GT family 37 (GT37).

View Article and Find Full Text PDF

Rhamnogalacturonan II (RG-II)-the most complex polysaccharide known in nature-exists as a borate cross-linked dimer in the plant primary cell wall. Boric acid facilitates the formation of this cross-link on the apiosyl residues of RG-II's side chain A. Here, we detail the reaction mechanism for the cross-linking process with ab initio calculations coupled with transition state theory.

View Article and Find Full Text PDF