Publications by authors named "Breeanna Mintmier"

Nitrate reductases play pivotal roles in nitrogen metabolism by leveraging the molybdopterin cofactor to facilitate the reduction of nitrate to nitrite. Periplasmic nitrate reductases (NapA) utilize nitrate as a terminal electron acceptor when oxygen is limiting, helping to drive anaerobic metabolism in bacteria. Despite extensive research into NapA homologs, open questions about the mechanism remain especially at the molecular level.

View Article and Find Full Text PDF

Mo K-edge X-ray absorption spectroscopy (XAS) is used to probe the structure of wild-type nitrate reductase NapA and the C176A variant. The results of extended X-ray absorption fine structure (EXAFS) experiments on NapA support an oxidized Mo(VI) hexacoordinate active site coordinated by a single terminal oxo donor, four sulfur atoms from two separate pyranopterin dithiolene ligands, and an additional S atom from a conserved cysteine amino acid residue. We found no evidence of a terminal sulfido ligand in NapA.

View Article and Find Full Text PDF

Periplasmic nitrate reductase NapA from Campylobacter jejuni (C. jejuni) contains a molybdenum cofactor (Moco) and a 4Fe-4S cluster and catalyzes the reduction of nitrate to nitrite. The reducing equivalent required for the catalysis is transferred from NapC → NapB → NapA.

View Article and Find Full Text PDF

Nudix hydrolase 7 (NUDT7) is an enzyme that hydrolyzes CoA species, is highly expressed in the liver, and resides in the peroxisomes. Peroxisomes are organelles where the preferential oxidation of dicarboxylic fatty acids occurs and where the hepatic synthesis of the primary bile acids cholic acid and chenodeoxycholic acid is completed. We previously showed that liver-specific overexpression of NUDT7 affects peroxisomal lipid metabolism but does not prevent the increase in total liver CoA levels that occurs during fasting.

View Article and Find Full Text PDF

The molybdopterin enzyme family catalyzes a variety of substrates and plays a critical role in the cycling of carbon, nitrogen, arsenic, and selenium. The dimethyl sulfoxide reductase (DMSOR) subfamily is the most diverse family of molybdopterin enzymes and the members of this family catalyze a myriad of reactions that are important in microbial life processes. Enzymes in the DMSOR family can transform multiple substrates; however, quantitative information about the substrate preference is sparse, and, more importantly, the reasons for the substrate selectivity are not clear.

View Article and Find Full Text PDF

Mononuclear molybdenum enzymes catalyze a variety of reactions that are essential in the cycling of nitrogen, carbon, arsenic, and sulfur. For decades, the structure and function of these crucial enzymes have been investigated to develop a fundamental knowledge for this vast family of enzymes and the chemistries they carry out. Therefore, obtaining abundant quantities of active enzyme is necessary for exploring this family's biochemical capability.

View Article and Find Full Text PDF

Campylobacter jejuni, a human gastrointestinal pathogen, uses nitrate for growth under microaerophilic conditions using periplasmic nitrate reductase (Nap). The catalytic subunit, NapA, contains two prosthetic groups, an iron sulfur cluster and a molybdenum cofactor. Here we describe the cloning, expression, purification, and Michaelis-Menten kinetics (kcat of 5.

View Article and Find Full Text PDF