This innovative system, using a short peptide tag, that exports multiple recombinant proteins in membrane bound vesicles from E. coli, provides an effective solution to a range of problems associated with bacterial recombinant protein expression. These recombinant vesicles compartmentalise proteins within a micro-environment that facilitates the production of otherwise challenging, toxic, insoluble, or disulfide-bond containing proteins from bacteria.
View Article and Find Full Text PDFWe describe an innovative system that exports diverse recombinant proteins in membrane-bound vesicles from . These recombinant vesicles compartmentalize proteins within a micro-environment that enables production of otherwise challenging insoluble, toxic, or disulfide-bond containing proteins from bacteria. The release of vesicle-packaged proteins supports isolation from the culture and allows long-term storage of active protein.
View Article and Find Full Text PDFMaintaining membrane integrity is of paramount importance to the survival of bacteria as the membrane is the site of multiple crucial cellular processes including energy generation, nutrient uptake and antimicrobial efflux. The DedA family of integral membrane proteins are widespread in bacteria and are associated with maintaining the integrity of the membrane. In addition, DedA proteins have been linked to resistance to multiple classes of antimicrobials in various microorganisms.
View Article and Find Full Text PDF