Proc Natl Acad Sci U S A
November 2020
The global distribution of primary production and consumption by humans (fisheries) is well-documented, but we have no map linking the central ecological process of consumption within food webs to temperature and other ecological drivers. Using standardized assays that span 105° of latitude on four continents, we show that rates of bait consumption by generalist predators in shallow marine ecosystems are tightly linked to both temperature and the composition of consumer assemblages. Unexpectedly, rates of consumption peaked at midlatitudes (25 to 35°) in both Northern and Southern Hemispheres across both seagrass and unvegetated sediment habitats.
View Article and Find Full Text PDFPhilos Trans R Soc Lond B Biol Sci
August 2020
Dungeness crabs () are ecologically and economically important in the coastal Northeast Pacific, yet relatively little is currently known about their feeding behaviour in the wild or their natural diet. Trophic biomarkers, such as fatty acids (FA), can be used to reveal trophic interactions. We used two feeding experiments to assess differences in FA composition of juvenile crabs fed different known foods to evaluate how they modify and integrate dietary FA into their own tissues and determine whether crab FA reflect diet changes over a six-week period.
View Article and Find Full Text PDFBackground: The blue crab, Callinectes sapidus, is economically and ecologically important in western Atlantic and Gulf of Mexico coastal estuaries. In 2010 blue crabs in the northern Gulf of Mexico were exposed to crude oil and chemical dispersants from the Deepwater Horizon oil spill. To characterize the blue crab transcriptome and identify genes that could be regulated in response to oil exposure we sequenced transcriptomes from hepatopancreas and gill tissues of juvenile blue crabs after exposing them to a water-accommodated fraction of surrogate Macondo crude oil in the laboratory and compared them to transcriptomes from an unexposed control group.
View Article and Find Full Text PDFThe identification of genes involved in the adaptive evolution of non-model organisms with uncharacterized genomes constitutes a major challenge. This study employed a rigorous and targeted candidate gene approach to test for positive selection on protein-coding genes of the blue crab, Callinectes sapidus. Four genes with putative roles in physiological adaptation to environmental stress were chosen as candidates.
View Article and Find Full Text PDF