Among the players involved in Ca(2+) homeostasis in heart tissue are SERCA (sarco/endoplasmic reticulum Ca(2+) ATPase)-type Ca(2+) pumps. Until recently, human heart was known to coexpress major SERCA2a and minor SERCA2b isoforms. Here, we will summarize data showing that nonfailing human heart is equipped with an increasing variety of SERCA isoforms comprised new SERCA2 (ATP2A2) and SERCA3 (ATP2A3) gene products.
View Article and Find Full Text PDFThe SERCA family includes 3 genes (SERCA1-3), each of which giving rise to various isoforms. To date, detailed structural data is only available for the SERCA1a isoform. Here, limited trypsinolysis of either human platelet membranes or recombinant SERCA3a in HEK-293 cells followed by Western blotting using antibodies covering different regions of the SERCA3(a) protein revealed two, kinetically distinct, Early (ETF) and Late (LTF) Tryptic Fragmentations.
View Article and Find Full Text PDFThe human sarco/endoplasmic reticulum (ER) Ca(2+)ATPase 3 (SERCA3) gene gives rise to SERCA3a-3f isoforms, the latter inducing ER stress in vitro. Here, we first demonstrated the co-expression of SERCA3a, -3d and -3f proteins in the heart. Evidence for endogenous proteins was obtained by using isoform-specific antibodies including a new SERCA3d-specific antibody, and either Western blotting of protein lysates or immunoprecipitation of membrane proteins.
View Article and Find Full Text PDFPlatelet Ca(2+) homeostasis is controlled by a multi-Ca(2+)ATPase system including two PMCA (plasma membrane Ca(2+)ATPase) and seven SERCA (sarco/endoplasmic reticulum Ca(2+)ATPase) isoforms. Previous studies have shown similar platelet Ca(2+) abnormalities in diabetic and hypertensive patients, including an increase in intracellular [Ca(2+)](I), a possible modulation of PMCA activity and increased PMCA tyrosine phosphorylation. Very recently, we found that platelets from diabetic patients also exhibited increased PMCA4b expression.
View Article and Find Full Text PDFBackground: Previous studies have shown platelet Ca(2+) abnormalities in diabetes mellitus and some reports suggest abnormal platelet production. Platelet Ca(2+) homeostasis is controlled by a multi-Ca(2+)-ATPase system that includes two plasma membrane Ca(2+)-ATPase (PMCA) and seven sarco/endoplasmic reticulum Ca(2+)-ATPase (SERCA) isoforms. In addition, we recently found that the expression of PMCA4b and SERCA3 isoforms may serve as new markers of abnormal megakaryocytopoiesis [Nurden P et al.
View Article and Find Full Text PDFThe aetiology of adolescent idiopathic scoliosis (AIS), the most common form of scoliosis, is unclear. Previous studies showed controversial platelet abnormalities including intracellular calcium. Platelet Ca2+ homeostasis is controlled by a multi-Ca2+-ATPase system including SERCA (sarco/endoplasmic reticulum Ca2+-ATPase) and PMCA (plasma membrane Ca2+-ATPase) isoforms.
View Article and Find Full Text PDFSarco/endoplasmic reticulum Ca(2+)ATPases (SERCAs) pump free Ca(2+) from the cytosol into the endoplasmic reticulum. The human SERCA3 family counts six members named SERCA3a to 3f. However, the exact role of these different isoforms in cellular physiology remains undetermined.
View Article and Find Full Text PDFIn type 2B von Willebrand disease, there is spontaneous binding of mutated von Willebrand factor (VWF) multimers to platelets. Here we report a family in which severe thrombocytopenia may also be linked to abnormal megakaryocytopoiesis. A heterozygous mutation in the VWF A1 domain gave a R1308P substitution in an interactive site for glycoprotein Ibalpha (GPIbalpha).
View Article and Find Full Text PDFWe recently documented the expression of a novel human mRNA variant encoding a yet uncharacterized SERCA [SR (sarcoplasmic reticulum)/ER (endoplasmic reticulum) Ca2+-ATPase] protein, SERCA2c [Gélébart, Martin, Enouf and Papp (2003) Biochem. Biophys. Res.
View Article and Find Full Text PDFCa(2+) signaling plays a key role in normal and abnormal platelet functions. Understanding platelet Ca(2+) signaling requires the knowledge of proteins involved in this process. Among these proteins are Ca(2+)ATPases or Ca(2+) pumps that deplete the cytosol of Ca(2+) ions.
View Article and Find Full Text PDFUnderstanding of Ca(2+) signaling requires the knowledge of proteins involved in this process. Among these proteins are sarco/endoplasmic reticulum Ca(2+)-ATPases (SERCAs) that pump Ca(2+) into the endoplasmic reticulum (ER). Recently, the human SERCA3 gene was shown to give rise to five isoforms (SERCA3a-e (h3a-h3e)).
View Article and Find Full Text PDFCalcium mobilization from the endoplasmic reticulum (ER) into the cytosol is a key component of several signaling networks controlling tumor cell growth, differentiation, or apoptosis. Sarco/endoplasmic reticulum calcium transport ATPases (SERCA-type calcium pumps), enzymes that accumulate calcium in the ER, play an important role in these phenomena. We report that SERCA3 expression is significantly reduced or lost in colon carcinomas when compared with normal colonic epithelial cells, which express this enzyme at a high level.
View Article and Find Full Text PDFSarco/endoplasmic reticulum Ca2+-ATPases (SERCAs) pump Ca2+ into the endoplasmic reticulum. Recently, three human SERCA3 (h3a-c) proteins and a previously unknown rat SERCA3 (r3b/c) mRNA have been described. Here, we (i) document two novel human SERCA3 splice variants h3d and h3e, (ii) provide data for the expression and mechanisms regulating the expression of all known SERCA3 variants (r3a, r3b/c, and h3a-e), and (iii) show functional characteristics of the SERCA3 isoforms.
View Article and Find Full Text PDFThe molecular cloning of two previously unknown human sarco/endoplasmic reticulum Ca(2+)-ATPase 3 (SERCA3) 3'-end transcripts, 3b and 3c, has been recently published. Data were lacking, however, for the presence of these SERCA3 variants in different tissue or cell types at the protein level. Here we report the co-expression of three human SERCA3 protein isoforms in platelets and T lymphoid Jurkat cells.
View Article and Find Full Text PDFThe endoplasmic reticulum (ER) plays a key role in Ca(2+) signalling through Ca(2+) release via inositol 1,4,5-trisphosphate receptors (InsP(3)-Rs) and Ca(2+) uptake by sarco/endoplasmic reticulum Ca(2+)-ATPases (SERCAs). Here, we investigated the organization of platelet ER and its biogenesis during megakaryocytopoiesis. First, erythro/megakaryoblastic MEG 01, UT7, M-O7e and CHRF 288-11 cell lines, platelets and thrombopoietin-induced UT7-Mpl cells were selected for the study of SERCA2b and SERCA3 proteins by Western blotting using the antibodies IID8 and PL/IM430, respectively.
View Article and Find Full Text PDFGaining insight into nonmuscle Ca(2+) signaling requires basic knowledge of the major structures involved. We investigated the expression of platelet Ca(2+)ATPases in normal and hypertension-associated abnormal Ca(2+) signaling. First, overall identification of normotensive Wistar-Kyoto rat Ca(2+)ATPases was attempted by looking for newly described human platelet 3'-end alternatively spliced sarco/endoplasmic reticulum Ca(2+)ATPases (SERCA) 3b mRNA and plasma membrane Ca(2+)ATPase (PMCA) 1b and 4b proteins, in addition to SERCA2b and SERCA3a isoforms.
View Article and Find Full Text PDFCalcium is accumulated from the cytosol into the endoplasmic reticulum by sarco-endoplasmic reticulum calcium transport ATPase (SERCA) enzymes. Because calcium stored in the endoplasmic reticulum is essential for cell growth, differentiation, calcium signaling, and apoptosis and because different SERCA enzymes possess distinct functional characteristics, in the present report we explored SERCA expression during in vitro differentiation of the human myeloid/promyelocytic cell lines HL-60 and NB4 and of freshly isolated acute promyelocytic leukemia cells. Two SERCA species have been found to be coexpressed in these cells: SERCA 2b and another isoform, SERCAPLIM, which is recognized by the PLIM430 monoclonal antibody.
View Article and Find Full Text PDFPlatelet Ca2+ signalling involves intracellular Ca2+ pools, whose content is controlled by sarco/endoplasmic reticulum Ca2+ATPases (SERCAs). Among these, a key role is played by the inositol trisphosphate-sensitive Ca2+ pool, associated with the SERCA 3b isoform. We have investigated the control of this Ca2+ pool through the cAMP-dependent phosphorylation of the GTP-binding protein, Rap (Ras-proximate) 1b.
View Article and Find Full Text PDFHuman platelets express several sarco/endoplasmic reticulum Ca2+ ATPase (SERCA) isoenzymes: SERCA2b of 100 kDa apparent molecular mass and two distinct enzymes of 97 kDa, one of them identified as being the SERCA3a isoform. The molecular identity of the third enzyme specifically recognized by the PL/IM430 monoclonal antibody has remained elusive. First, the study of the 3'-end part of platelet SERCA3 mRNA, by means of RT-PCR amplification using sets of primers covering the N-3 to N (ultimate) exons of the human SERCA3 sequence, revealed the presence of two distinct mRNA sequences, SERCA3a and a longer variant.
View Article and Find Full Text PDFCalcium mobilization from intracellular storage organelles is a key component of the second messenger system inducing cell activation. Calcium transport ATPases associated with intracellular calcium storage organelles play a major role in controlling this process by accumulating calcium from the cytosol into intracellular calcium pools. In this study the modulation of the expression of the sarco-endoplasmic reticulum calcium transport ATPase (SERCA) isoenzymes has been studied in lymphocytes undergoing phorbol myristate acetate and ionomycin-induced activation.
View Article and Find Full Text PDFThe Ca2+ signal accompanying cell function involves the activities of plasma membrane Ca2+ transport ATPases (PMCA) which transport Ca2+ ions out of the cell and those of sarco/endoplasmic reticulum Ca2+ transport ATPases (SERCA), which pump Ca2+ ions into intracellular Ca2+ pools. Although a platelet Ca2+ transport ATPase was described three decades ago, for a long time it remained poorly understood in terms of its cellular localization and identity. By integrating data obtained during recent years, including newly available information in the literature for the PMCAs and aspects of our work concerning the SERCAs, the present review will show how the overall view of the platelet Ca2+ATPase system has to be modified due to the presence of a number of Ca2+ATPases in these cells.
View Article and Find Full Text PDFThe relationship between Rap1 proteins and cell proliferation was assessed by investigating the effect of isoforms AA and BB of platelet-derived growth factor (PDGF) on Rap1 protein and mRNA expression throughout the smooth muscle cell cycle. Firstly, PDGF BB-induced cell cycle traverse was studied, thus demonstrating entry into S phase at 18 to 20 h. Western blotting carried out on total Rap1 proteins showed that 5 ng/ml of PDGF BB instigated a biphasic induction of total Rap1 proteins during the cell cycle.
View Article and Find Full Text PDFThe effect of platelet-derived growth factor (PDGF) on Rap1 expression was investigated in rat vascular smooth muscle cells (SMC). First, evidence for Rap1 proteins was shown by their: (i) detection in membranes using a specific anti-Rap1 antibody, (ii) typical shift in electrophoretic mobility as a consequence of reduction, and (iii) cAMP-induced phosphorylation and immunoprecipitation. Then, the mitogenic activity of 10 ng/ml PDGF AA and BB for 48 h, resulting in a 2- and 5-fold increase in [3H]thymidine incorporation, was correlated with that of total Rap1 protein expression which was found to be 99% +/- 36% and 260% +/- 70%, respectively.
View Article and Find Full Text PDFTwo sarco/endoplasmic reticulum Ca(2+)-ATPases (SERCAs) have been previously identified in platelets: the 100-kDa SERCA2b and the 97-kDa SERCA3 isoforms. Analysis of the acylphosphate intermediate (E-P) formation and the immunoreactivity of the platelet Ca(2+)-ATPases and their proteolytic fragments upon controlled trypsinolysis revealed the presence of an additional 97-kDa Ca(2+)-ATPase that comigrates with SERCA3 on SDS-polyacrylamide gels. At a trypsin/membrane protein ratio of 0.
View Article and Find Full Text PDFWe previously demonstrated abnormal Ca2+ transport by microsomes in platelets from a grey platelet syndrome patient. Here, we investigated the platelet Ca2+ ATPases that mediate this transport, as well as its possible regulation by rap 1 protein. We showed that grey platelet syndrome platelets expressed the same two distinct Ca2+ ATPases as those recently described in normal platelets; the 100 kD SERCA2-b isoform (Sarco/Endoplasmic Reticulum Ca2+ATPase) and a new 97 kD SERCA isoform.
View Article and Find Full Text PDF