Publications by authors named "Breanne Holmes"

Vitellogenin (VTG) is a biomarker for possible endocrine activity of chemicals acting via the estrogen, androgen, or steroidogenesis pathways. VTG is assessed in standardised fish guideline studies conducted for regulatory safety assessment of chemicals. VTG data can be highly variable leading to concerns for potential equivocal, false positive and/or negative outcomes.

View Article and Find Full Text PDF

Disinfection byproducts are formed during most drinking water treatment and presently number >800, some of which are implicated in human health outcomes including bladder cancer and infertility, with unknown mechanisms of action. In particular, it is not yet understood whether these compounds can disrupt the estrogen-signaling pathway through binding to the human estrogen receptor (ER). In the present study, 21 disinfection byproducts, selected for their predicted involvement in endocrine-related diseases and their structural diversity, were individually evaluated for their binding affinity to the human ER and in silico, and then a subset of these chemicals was studied in binary mixtures with the known weak estrogen, 4-n-nonylphenol.

View Article and Find Full Text PDF

The formation of disinfection by-products (DBPs) in drinking water occurs when chemical disinfectants such as chlorine and chloramine react with natural organic matter and anthropogenic pollutants. Some DBPs have been linked to bladder cancer and infertility; however, the underlying mechanism of action is unknown. One possibility is disruption of the endocrine system, with DBPs binding to the androgen receptor and subsequently altering gene expression.

View Article and Find Full Text PDF

Two primary O(2)-sensors for humans are the HIF-hydroxylases, enzymes that hydroxylate specific residues of the hypoxia inducible factor-α (HIF). These enzymes are factor inhibiting HIF (FIH) and prolyl hydroxylase-2 (PHD2), each an α-ketoglutarate (αKG) dependent, non-heme Fe(II) dioxygenase. Although the two enzymes have similar active sites, FIH hydroxylates Asn(803) of HIF-1α while PHD2 hydroxylates Pro(402) and/or Pro(564) of HIF-1α.

View Article and Find Full Text PDF

The factor inhibiting HIF (FIH) is a proximate oxygen sensor for human cells, hydroxylating Asn(803) within the α-subunit of the hypoxia inducible factor (HIF). FIH is an α-ketoglutatrate (αKG)-dependent, non-heme Fe(II) dioxygenase, in which Fe(II) is coordinated by a (His(2)Asp) facial triad, αKG, and H(2)O. Hydrogen bonding among the facial triad, the HIF-Asn(803) side chain, and various second-sphere residues suggests a functional role for the second coordination sphere in tuning the chemistry of the Fe(II) center.

View Article and Find Full Text PDF