Publications by authors named "Breanndan O Conchuir"

For micelles, "shape" is prominent in rheological computations of fluid flow, but this "shape" is often expressed too informally to be useful for rigorous analyses. We formalize topological "shape equivalence" of micelles, both and , to enable visualization of computational fluid dynamics. Although topological methods in visualization provide significant insights into fluid flows, this opportunity has been limited by the known difficulties in creating representative geometry.

View Article and Find Full Text PDF

By Molecular Dynamics simulation, we investigate the dynamics of isotropic fluids of colloidal nanotrimers whose interactions are described by varying the strength of attractive and repulsive terms of the Mie potential. To provide a consistent comparison between the systems described by different force fields, we determine the phase diagram and critical points of each system, characterize the morphology of high-density liquid phases at the same reduced temperature and density, and finally investigate their long-time relaxation dynamics. In particular, we detect an especially complex dynamics that reveals the existence of slow and fast nanotrimers and the resulting occurrence of non-Gaussianity, which develops at intermediate timescales.

View Article and Find Full Text PDF

Chemical heterogeneity of solid surfaces disrupts the adsorption of surfactants from the bulk liquid. While its presence can hinder the performance of some formulations, bespoke chemical patterning could potentially facilitate controlled adsorption for nanolithography applications. Although some computational studies have investigated the impact of regularly patterned surfaces on surfactant adsorption, in reality, many interesting surfaces are expected to be stochastically disordered and this is an area unexplored via simulations.

View Article and Find Full Text PDF

Many surfactant-based formulations are utilized in industry as they produce desirable viscoelastic properties at low concentrations. These properties are due to the presence of worm-like micelles (WLMs), and as a result, understanding the processes that lead to WLM formation is of significant interest. Various experimental techniques have been applied with some success to this problem but can encounter issues probing key microscopic characteristics or the specific regimes of interest.

View Article and Find Full Text PDF

The gelation kinetics of silica nanoparticles is a central process in physical chemistry, yet it is not fully understood. Gelation times are measured to increase by over 4 orders of magnitude, simply changing the monovalent salt species from CsCl to LiCl. This striking effect has no microscopic explanation within current paradigms.

View Article and Find Full Text PDF

Interactions between colloidal particles are strongly affected by the particle surface chemistry and composition of the liquid phase. Further complexity is introduced when particles are exposed to shear flow, often leading to broad variation of the final properties of formed clusters. Here we discover a new dynamical effect arising in shear-induced aggregation where repeated aggregation and breakup events cause the particle surface roughness to irreversibly increase with time, thus decreasing the bond adhesive energy and the resistance of the aggregates to breakup.

View Article and Find Full Text PDF