Publications by authors named "Breanna Symmes"

Exposure to anaesthetic drugs during the fetal or neonatal period induces widespread neuronal apoptosis in the brains of rodents and non-human primates. Hundreds of published preclinical studies and nearly 20 clinical studies have documented cognitive and behavioural deficits many months or years later, raising the spectre that early life anaesthesia exposure is a long-term, perhaps permanent, insult that might affect the quality of life of millions of humans. Although the phenomenon of anaesthesia-induced developmental neurotoxicity is well characterised, there are important and lingering questions pertaining to sex differences and neurodevelopmental sequelae that might occur differentially in females and males.

View Article and Find Full Text PDF

In humans and mice, the first line of innate defense against inhaled pathogens and particles in the respiratory tract is airway mucus. The primary solid components of the mucus layer are the mucins MUC5AC and MUC5B, polymeric glycoproteins whose changes in abundance and structure can dramatically affect airway defense. Accordingly, and are tightly regulated at a transcriptional level by tissue-specific transcription factors in homeostasis and in response to injurious and inflammatory triggers.

View Article and Find Full Text PDF

Parkinson's disease is characterized by the death of dopaminergic neurons in the substantia nigra. To understand the molecular mechanisms of the disease, an in vitro model is important. In the 1990s, we used the SV40 large T antigen to immortalize dopaminergic neurons derived from Embryonic Day 14 rat mesencephalon.

View Article and Find Full Text PDF

The short lifetime of superoxide and the low rates of formation expected in vivo make detection by standard continuous wave (CW) electron paramagnetic resonance (EPR) challenging. The new rapid-scan EPR method offers improved sensitivity for these types of samples. In rapid-scan EPR, the magnetic field is scanned through resonance in a time that is short relative to electron spin relaxation times, and data are processed to obtain the absorption spectrum.

View Article and Find Full Text PDF

It is widely accepted that long-term changes in synapse structure and function are mediated by rapid activity-dependent gene transcription and new protein synthesis. A growing amount of evidence suggests that the microRNA (miRNA) pathway plays an important role in coordinating these processes. Despite recent advances in this field, there remains a critical need to identify specific activity-regulated miRNAs as well as their key messenger RNA (mRNA) targets.

View Article and Find Full Text PDF