Publications by authors named "Breanna S Vollmar"

Here, we explore whether PEGylation of antibodies can modulate their biodistribution to the eye, an organ once thought to be immune privileged but has recently been shown to be accessible to IV-administered large molecules, such as antibodies. We chose to PEGylate an anti-MerTK antibody, a target with known potential for ocular toxicity, to minimize biodistribution to retinal pigment epithelial cells (RPEs) in the eye by increasing the hydrodynamic volume of the antibody. We used site-specific conjugation to an engineered cysteine on anti-MerTK antibody to chemically attach 40-kDa branched or linear PEG polymers.

View Article and Find Full Text PDF

Antitumor immune responses depend on the infiltration of solid tumors by effector T cells, a process guided by chemokines. In particular, the chemokine CXCL10 has been shown to play a critical role in mediating recruitment of CXCR3 + cytolytic T and NK cells in tumors, though its use as a therapeutic agent has not been widely explored. One of the limitations is due to the rapid inactivation of CXCL10 by dipeptidyl peptidase 4 (DPP4), a broadly expressed enzyme that is active in plasma and other bodily fluids.

View Article and Find Full Text PDF

Calicheamicin antibody-drug conjugates (ADCs) are effective therapeutics for leukemias with two recently approved in the United States: Mylotarg (gemtuzumab ozogamicin) targeting CD33 for acute myeloid leukemia and Besponsa (inotuzumab ozogamicin) targeting CD22 for acute lymphocytic leukemia. Both of these calicheamicin ADCs are heterogeneous, aggregation-prone, and have a shortened half-life due to the instability of the acid-sensitive hydrazone linker in circulation. We hypothesized that we could improve upon the heterogeneity, aggregation, and circulation stability of calicheamicin ADCs by directly attaching the thiol of a reduced calicheamicin to an engineered cysteine on the antibody via a disulfide bond to generate a linkerless and traceless conjugate.

View Article and Find Full Text PDF

This work discloses the first examples of antibody-drug conjugates (ADCs) that are constructed from linker-drugs bearing dimeric seco-CBI payloads (duocarmycin analogs). Several homogeneous, CD22-targeting THIOMAB antibody-drug conjugates (TDCs) containing the dimeric seco-CBI entities are shown to be highly efficacious in the WSU-DLCL2 and BJAB mouse xenograft models. Surprisingly, the seco-CBI-containing conjugates are also observed to undergo significant biotransformation in vivo in mice, rats, and monkeys and thereby form 1:1 adducts with the Alpha-1-Microglobulin (A1M) plasma protein from these species.

View Article and Find Full Text PDF

The valine-citrulline (Val-Cit) dipeptide and p-aminobenzyl (PAB) spacer have been commonly used as a cleavable self-immolating linker in ADC design including in the clinically approved ADC, brentuximab vedotin (Adcetris). When the same linker was used to connect to the phenol of the cyclopropabenzindolone (CBI) (P1), the resulting ADC1 showed loss of potency in CD22 target-expressing cancer cell lines (e.g.

View Article and Find Full Text PDF

The incorporation of cysteines into antibodies by mutagenesis allows for the direct conjugation of small molecules to specific sites on the antibody via disulfide bonds. The stability of the disulfide bond linkage between the small molecule and the antibody is highly dependent on the location of the engineered cysteine in either the heavy chain (HC) or the light chain (LC) of the antibody. Here, we explore the basis for this site-dependent stability.

View Article and Find Full Text PDF

Electron cryomicroscopy, or cryoEM, is an emerging technique for studying the three-dimensional structures of proteins and large macromolecular machines. Electron crystallography is a branch of cryoEM in which structures of proteins can be studied at resolutions that rival those achieved by X-ray crystallography. Electron crystallography employs two-dimensional crystals of a membrane protein embedded within a lipid bilayer.

View Article and Find Full Text PDF

The internal ribosome entry site (IRES) of the hepatitis C virus (HCV) drives noncanonical initiation of protein synthesis necessary for viral replication. Functional studies of the HCV IRES have focused on 80S ribosome formation but have not explored its role after the 80S ribosome is poised at the start codon. Here, we report that mutations of an IRES domain that docks in the 40S subunit's decoding groove cause only a local perturbation in IRES structure and result in conformational changes in the IRES-rabbit 40S subunit complex.

View Article and Find Full Text PDF

The conserved Ndc80 complex is an essential microtubule-binding component of the kinetochore. Recent findings suggest that the Ndc80 complex influences microtubule dynamics at kinetochores in vivo. However, it was unclear if the Ndc80 complex mediates these effects directly, or by affecting other factors localized at the kinetochore.

View Article and Find Full Text PDF

We describe a general computational method for designing proteins that self-assemble to a desired symmetric architecture. Protein building blocks are docked together symmetrically to identify complementary packing arrangements, and low-energy protein-protein interfaces are then designed between the building blocks in order to drive self-assembly. We used trimeric protein building blocks to design a 24-subunit, 13-nm diameter complex with octahedral symmetry and a 12-subunit, 11-nm diameter complex with tetrahedral symmetry.

View Article and Find Full Text PDF

The small heat shock protein (sHSP) αB-crystallin (αB) plays a key role in the cellular protection system against stress. For decades, high-resolution structural studies on heterogeneous sHSPs have been confounded by the polydisperse nature of αB oligomers. We present an atomic-level model of full-length αB as a symmetric 24-subunit multimer based on solid-state NMR, small-angle X-ray scattering (SAXS), and EM data.

View Article and Find Full Text PDF

Antimicrobial peptides, which play multiple host-defense roles, have garnered increased experimental focus because of their potential applications in the pharmaceutical and food production industries. While their mechanisms of action are richly debated, models that have been advanced share modes of peptide-lipid interactions that require peptide dynamics. Before the highly cooperative and specific events suggested in these models take place, peptides must undergo an important process of migration along the membrane surface and delivery from their site of binding on the membrane to the actual site of functional performance.

View Article and Find Full Text PDF

We studied amidated and non-amidated piscidins 1 and 3, amphipathic cationic antimicrobial peptides from fish, to characterize functional and structural similarities and differences between these peptides and better understand the structural motifs involved in biological activity and functional diversity among amidated and non-amidated isoforms. Antimicrobial and hemolytic assays were carried out to assess their potency and toxicity, respectively. Site-specific high-resolution solid-state NMR orientational restraints were obtained from (15)N-labeled amidated and non-amidated piscidins 1 and 3 in the presence of hydrated oriented lipid bilayers.

View Article and Find Full Text PDF

High magnetic field solid-state NMR was performed on amphipathic cationic antimicrobial peptides from fish to characterize their secondary structure and orientation in hydrated phospholipid bilayers. High-resolution distance and orientational restraints on 13C- and 15N-labeled amidated piscidins 1 and 3 provided site-specific information establishing alpha-helicity and an orientation parallel to the membrane surface. Few membrane-bound natural peptides with this topology have been structurally studied at high resolution in the presence of hydrated lipid bilayers.

View Article and Find Full Text PDF