Plant growth-promoting microbes can affect the plant microbiome, improving different properties of the plant such as yield and health. Many companies are commercializing these microbes as products called biologicals. Defining the product concept is one of the first and most important steps in making a biological product.
View Article and Find Full Text PDFGene expression is reconfigured rapidly during the cell cycle to execute the cellular functions specific to each phase. Studies conducted with synchronized plant cell suspension cultures have identified hundreds of genes with periodic expression patterns across the phases of the cell cycle, but these results may differ from expression occurring in the context of intact organs. Here, we describe the use of fluorescence-activated cell sorting to analyze the gene expression profile of G2/M cells in the growing root.
View Article and Find Full Text PDFPlants live in biogeochemically diverse soils with diverse microbiota. Plant organs associate intimately with a subset of these microbes, and the structure of the microbial community can be altered by soil nutrient content. Plant-associated microbes can compete with the plant and with each other for nutrients, but may also carry traits that increase the productivity of the plant.
View Article and Find Full Text PDFDNA methylation is an epigenetic modification that differs between plant organs and tissues, but the extent of variation between cell types is not known. Here, we report single-base-resolution whole-genome DNA methylomes, mRNA transcriptomes and small RNA transcriptomes for six cell populations covering the major cell types of the Arabidopsis root meristem. We identify widespread cell-type-specific patterns of DNA methylation, especially in the CHH sequence context, where H is A, C or T.
View Article and Find Full Text PDFTo ensure an adequate organ mass, the daughters of stem cells progress through a transit-amplifying phase displaying rapid cell division cycles before differentiating. Here, we show that Arabidopsis thaliana microRNA miR396 regulates the transition of root stem cells into transit-amplifying cells by interacting with GROWTH-REGULATING FACTORs (GRFs). The GRFs are expressed in transit-amplifying cells but are excluded from the stem cells through inhibition by miR396.
View Article and Find Full Text PDFImmune systems distinguish "self" from "nonself" to maintain homeostasis and must differentially gate access to allow colonization by potentially beneficial, nonpathogenic microbes. Plant roots grow within extremely diverse soil microbial communities but assemble a taxonomically limited root-associated microbiome. We grew isogenic Arabidopsis thaliana mutants with altered immune systems in a wild soil and also in recolonization experiments with a synthetic bacterial community.
View Article and Find Full Text PDFBecause proteins are the major functional components of cells, knowledge of their cellular localization is crucial to gaining an understanding of the biology of multicellular organisms. We have generated a protein expression map of the Arabidopsis root providing the identity and cell type-specific localization of nearly 2,000 proteins. Grouping proteins into functional categories revealed unique cellular functions and identified cell type-specific biomarkers.
View Article and Find Full Text PDFSmall non-coding RNAs (ncRNAs) are key regulators of plant development through modulation of the processing, stability, and translation of larger RNAs. We present small RNA data sets comprising more than 200 million aligned Illumina sequence reads covering all major cell types of the root as well as four distinct developmental zones. MicroRNAs (miRNAs) constitute a class of small ncRNAs that are particularly important for development.
View Article and Find Full Text PDFMulticellular organisms depend on cell-to-cell communication to coordinate both development and environmental responses across diverse cell types. Intercellular signaling is particularly critical in plants because development is primarily postembryonic and continuous over a plant's life span. Additionally, development is impacted by restrictions imposed by a sessile lifestyle and limitations on relative cell positions.
View Article and Find Full Text PDFActa Crystallogr D Biol Crystallogr
March 2000
Pectate lyase A is secreted by Erwinia chrysanthemi and is a virulence factor for soft rot diseases in plants. Crystals of pectate lyase A were obtained by vapor-diffusion techniques in the presence of polyethylene glycol. The crystals belong to the monoclinic space group P2(1), with unit-cell parameters a = 48.
View Article and Find Full Text PDFActa Crystallogr D Biol Crystallogr
February 1999
Phosphatidylinositol-transfer protein (PITP) is a soluble, ubiquitously expressed, highly conserved protein encoded by two genes in humans, rodents and other mammals. A cDNA encoding the alpha isoform of the rat gene was expressed to high levels in Escherichia coli, the protein purified and the homogeneous protein used for crystallization studies. Crystals of rat PITP-alpha were obtained by vapor-diffusion techniques using the sitting-drop method.
View Article and Find Full Text PDF