Publications by authors named "Brea-Calvo G"

Background And Aims: Primary Coenzyme Q (CoQ) deficiency caused by defects is a clinically heterogeneous mitochondrial condition characterized by reduced levels of CoQ in tissues. Next-generation sequencing has lately boosted the genetic diagnosis of an increasing number of patients. Still, functional validation of new variants of uncertain significance is essential for an adequate diagnosis, proper clinical management, treatment, and genetic counseling.

View Article and Find Full Text PDF

COQ7 pathogenetic variants cause primary CoQ deficiency and a clinical phenotype of encephalopathy, peripheral neuropathy, or multisystemic disorder. Early diagnosis is essential for promptly starting CoQ supplementation. Here, we report novel compound heterozygous variants in the COQ7 gene responsible for a prenatal onset (20 weeks of gestation) of hypertrophic cardiomyopathy and intestinal dysmotility in a Bangladesh consanguineous family with two affected siblings.

View Article and Find Full Text PDF

Coenzyme Q (CoQ) is a redox lipid that fulfills critical functions in cellular bioenergetics and homeostasis. CoQ is synthesized by a multi-step pathway that involves several COQ proteins. Two steps of the eukaryotic pathway, the decarboxylation and hydroxylation of position C1, have remained uncharacterized.

View Article and Find Full Text PDF

Coenzyme Q (CoQ) is a redox lipid that fulfills critical functions in cellular bioenergetics and homeostasis. CoQ is synthesized by a multi-step pathway that involves several COQ proteins. Two steps of the eukaryotic pathway, the decarboxylation and hydroxylation of position C1, have remained uncharacterized.

View Article and Find Full Text PDF

Originally identified as a key component of the mitochondrial respiratory chain, Coenzyme Q (CoQ or CoQ for human tissues) has recently been revealed to be essential for many different redox processes, not only in the mitochondria, but elsewhere within other cellular membrane types. Cells rely on endogenous CoQ biosynthesis, and defects in this still-not-completely understood pathway result in primary CoQ deficiencies, a group of conditions biochemically characterised by decreased tissue CoQ levels, which in turn are linked to functional defects. Secondary CoQ deficiencies may result from a wide variety of cellular dysfunctions not directly linked to primary synthesis.

View Article and Find Full Text PDF

Skeletal muscle adapts to different exercise training modalities with age; however, the impact of both variables at the systemic and tissue levels is not fully understood. Here, adult and old C57BL/6 male mice were assigned to one of three groups: sedentary, daily high-intensity intermittent training (HIIT), or moderate intensity continuous training (MICT) for 4 weeks, compatible with the older group's exercise capacity. Improvements in body composition, fasting blood glucose, and muscle strength were mostly observed in the MICT old group, while effects of HIIT training in adult and old animals was less clear.

View Article and Find Full Text PDF

Primary coenzyme Q (CoQ) deficiency includes a heterogeneous group of mitochondrial diseases characterized by low mitochondrial levels of CoQ due to decreased endogenous biosynthesis rate. These diseases respond to CoQ treatment mainly at the early stages of the disease. The advances in the next generation sequencing (NGS) as whole-exome sequencing (WES) and whole-genome sequencing (WGS) have increased the discoveries of mutations in either gene already described to participate in CoQ biosynthesis or new genes also involved in this pathway.

View Article and Find Full Text PDF

Unlabelled: The current genomics era is bringing an unprecedented growth in the amount of gene expression data, only comparable to the exponential growth of sequences in databases during the last decades. This data now allows the design of secondary analyses that take advantage of this information to create new knowledge through specific computational approaches. One of these feasible analyses is the evaluation of the expression level for a gene through a series of different conditions or cell types.

View Article and Find Full Text PDF

Coenzyme Q (CoQ ) deficiency is a rare disease characterized by a decreased accumulation of CoQ in cell membranes. Considering that CoQ synthesis and most of its functions are carried out in mitochondria, CoQ deficiency cases are usually considered a mitochondrial disease. A relevant feature of CoQ deficiency is that it is the only mitochondrial disease with a successful therapy available, the CoQ supplementation.

View Article and Find Full Text PDF

Primary Coenzyme Q (CoQ) deficiencies are clinically heterogeneous conditions and lack clear genotype-phenotype correlations, complicating diagnosis and prognostic assessment. Here we present a compilation of all the symptoms and patients with primary CoQ deficiency described in the literature so far and analyse the most common clinical manifestations associated with pathogenic variants identified in the different COQ genes. In addition, we identified new associations between the age of onset of symptoms and different pathogenic variants, which could help to a better diagnosis and guided treatment.

View Article and Find Full Text PDF

The current genomics era is bringing an unprecedented growth in the amount of gene expression data, only comparable to the exponential growth of sequences in databases during the last decades. This data allow the design of secondary analyses that take advantage of this information to create new knowledge. One of these feasible analyses is the evaluation of the expression level for a gene through a series of different conditions or cell types.

View Article and Find Full Text PDF

Moderate overexpression of Opa1, the master regulator of mitochondrial cristae morphology, significantly improved mitochondrial damage induced by drugs, surgical denervation, or oxidative phosphorylation (OXPHOS) defects due to specific impairment of a single mitochondrial respiratory chain complex. Here, we investigated the effectiveness of this approach in the Mpv17 mouse, characterized by profound, multisystem mitochondrial DNA (mtDNA) depletion. After the crossing with Opa1 mice, we found a surprising anticipation of the severe, progressive focal segmental glomerulosclerosis, previously described in Mpv17 animals as a late-onset clinical feature (after 12-18 months of life).

View Article and Find Full Text PDF

Constitutive expression of the chemokine Mcp1 in mouse cardiomyocytes creates a model of inflammatory cardiomyopathy, with death from heart failure at age 7-8 months. A critical pathogenic role has previously been proposed for induced oxidative stress, involving NADPH oxidase activation. To test this idea, we exposed the mice to elevated oxygen levels.

View Article and Find Full Text PDF

Fatty acids and glucose are the main bioenergetic substrates in mammals. Impairment of mitochondrial fatty acid oxidation causes mitochondrial myopathy leading to decreased physical performance. Here, we report that haploinsufficiency of , a member of the aarF domain-containing mitochondrial protein kinase family, in human is associated with liver dysfunction and severe mitochondrial myopathy with lipid droplets in skeletal muscle.

View Article and Find Full Text PDF

Coenzyme Q (CoQ), a redox-active lipid, is comprised of a quinone group and a polyisoprenoid tail. It is an electron carrier in the mitochondrial respiratory chain, a cofactor of other mitochondrial dehydrogenases, and an essential antioxidant. CoQ requires a large set of enzymes for its biosynthesis; mutations in genes encoding these proteins cause primary CoQ deficiency, a clinically and genetically heterogeneous group of diseases.

View Article and Find Full Text PDF

Background: Primary CoQ deficiency occurs because of the defective biosynthesis of coenzyme Q, one of the key components of the mitochondrial electron transport chain. Patients with this disease present with a myriad of non-specific symptoms and signs, posing a diagnostic challenge. Whole-exome sequencing is vital in the diagnosis of these cases.

View Article and Find Full Text PDF

Alternative oxidases (AOXs) bypass respiratory complexes III and IV by transferring electrons from coenzyme Q directly to O. They have therefore been proposed as a potential therapeutic tool for mitochondrial diseases. We crossed the severely myopathic skeletal muscle-specific COX15 knockout (KO) mouse with an AOX-transgenic mouse.

View Article and Find Full Text PDF

Primary Coenzyme Q deficiencies represent a group of rare conditions caused by mutations in one of the genes required in its biosynthetic pathway at the enzymatic or regulatory level. The associated clinical manifestations are highly heterogeneous and mainly affect central and peripheral nervous system, kidney, skeletal muscle and heart. Genotype-phenotype correlations are difficult to establish, mainly because of the reduced number of patients and the large variety of symptoms.

View Article and Find Full Text PDF

We evaluated the coenzyme Q₁₀ (CoQ) levels in patients who were diagnosed with mitochondrial oxidative phosphorylation (OXPHOS) and non-OXPHOS disorders (n=72). Data from the 72 cases in this study revealed that 44.4% of patients showed low CoQ concentrations in either their skeletal muscle or skin fibroblasts.

View Article and Find Full Text PDF

Coenzyme Q (CoQ) is a unique electron carrier in the mitochondrial respiratory chain, which is synthesized on-site by a nuclear encoded multiprotein complex. CoQ receives electrons from different redox pathways, mainly NADH and FADH2 from tricarboxylic acid pathway, dihydroorotate dehydrogenase, electron transfer flavoprotein dehydrogenase and glycerol-3-phosphate dehydrogenase that support key aspects of the metabolism. Here we explore some lines of evidence supporting the idea of the interaction of CoQ with the respiratory chain complexes, contributing to their superassembly, including respirasome, and its role in reactive oxygen species production in the mitochondrial inner membrane.

View Article and Find Full Text PDF

Primary coenzyme Q10 (CoQ10) deficiencies are rare, clinically heterogeneous disorders caused by mutations in several genes encoding proteins involved in CoQ10 biosynthesis. CoQ10 is an essential component of the electron transport chain (ETC), where it shuttles electrons from complex I or II to complex III. By whole-exome sequencing, we identified five individuals carrying biallelic mutations in COQ4.

View Article and Find Full Text PDF

MPV17 is a mitochondrial protein of unknown function, and mutations in MPV17 are associated with mitochondrial deoxyribonucleic acid (DNA) maintenance disorders. Here we investigated its most similar relative, MPV17L2, which is also annotated as a mitochondrial protein. Mitochondrial fractionation analyses demonstrate MPV17L2 is an integral inner membrane protein, like MPV17.

View Article and Find Full Text PDF

Amino acids are essential for cell growth and proliferation for they can serve as precursors of protein synthesis, be remodelled for nucleotide and fat biosynthesis, or be burnt as fuel. Mitochondria are energy producing organelles that additionally play a central role in amino acid homeostasis. One might expect mitochondrial metabolism to be geared towards the production and preservation of amino acids when cells are deprived of an exogenous supply.

View Article and Find Full Text PDF