Publications by authors named "Brazhe N"

The lack of oxygen (O2) causes changes in the cell functioning. Modeling hypoxic conditions in vitro is challenging given that different cell types exhibit different sensitivities to tissue O2 levels. We present an effective in vivo platform for assessing various tissue and organ parameters in Danio rerio larvae under acute hypoxic conditions.

View Article and Find Full Text PDF

Neuroglobin (Ngb) is a cytosolic heme protein that plays an important role in protecting cells from apoptosis through interaction with oxidized cytochrome (Cyt ) released from mitochondria. The interaction of reduced Ngb and oxidized Cyt is accompanied by electron transfer between them and the reduction in Cyt . Despite the growing number of studies on Ngb, the mechanism of interaction between Ngb and Cyt is still unclear.

View Article and Find Full Text PDF

The objective of the current review is to summarize the current state of optical methods in redox biology. It consists of two parts, the first is dedicated to genetically encoded fluorescent indicators and the second to Raman spectroscopy. In the first part, we provide a detailed classification of the currently available redox biosensors based on their target analytes.

View Article and Find Full Text PDF

How aging affects cells of the human brain active milieu remains largely unknown. Here, we analyze astrocytes and neurons in the neocortical tissue of younger (22-50 years) and older (51-72 years) adults. Aging decreases the amount of reduced mitochondrial cytochromes in astrocytes but not neurons.

View Article and Find Full Text PDF

It is generally accepted that oxidative stress plays a key role in the development of ischemia-reperfusion injury in ischemic heart disease. However, the mechanisms how reactive oxygen species trigger cellular damage are not fully understood. Our study investigates redox state and highly reactive substances within neonatal and adult cardiomyocytes under hypoxia conditions.

View Article and Find Full Text PDF
Article Synopsis
  • Diabetes increases the risk of ischemic stroke by worsening cerebral damage due to hyperglycemia, though the exact mechanisms are not fully understood.
  • This study presents novel findings on the real-time dynamics of hydrogen peroxide (HO) in neuronal mitochondria during ischemic stroke, using advanced technology on both cultured cells and rat brains.
  • Results indicate that high blood sugar doesn't impact HO generation in the ischemic area but does worsen the overall effects of the stroke, revealing how elevated glucose levels can alter mitochondrial function in neurons.
View Article and Find Full Text PDF

Astrocytes, an integral component of the central nervous system (CNS), contribute to the maintenance of physiological homeostasis through their roles in synaptic function, K buffering, blood-brain barrier (BBB) maintenance, and neuronal metabolism. Reactive astrocytes refer to astrocytes undergoing morphological, molecular and functional remodelling in response to pathological stimuli. The activation and differentiation of astrocytes are implicated in the pathogenesis of multiple neurodegenerative diseases.

View Article and Find Full Text PDF

The balance between the mitochondrial respiratory chain activity and the cell's needs in ATP ensures optimal cellular function. Cytochrome c is an essential component of the electron transport chain (ETC), which regulates ETC activity, oxygen consumption, ATP synthesis and can initiate apoptosis. The impact of conformational changes in cytochrome c on its function is not understood for the lack of access to these changes in intact mitochondria.

View Article and Find Full Text PDF

Aim: A high-fat diet (HFD) is generally considered to negatively influence the body, the brain, and cognition. Nonetheless, fat and fatty acids are essential for nourishing and constructing brain tissue. Astrocytes are central for lipolysis and fatty acids metabolism.

View Article and Find Full Text PDF

A key event in the cytochrome -dependent apoptotic pathway is the permeabilization of the outer mitochondrial membrane, resulting in the release of various apoptogenic factors, including cytochrome , into the cytosol. It is believed that the permeabilization of the outer mitochondrial membrane can be induced by the peroxidase activity of cytochrome in a complex with cardiolipin. Using a number of mutant variants of cytochrome , we showed that both substitutions of Lys residues from the universal binding site for oppositely charged Glu residues and mutations leading to a decrease in the conformational mobility of the red Ω-loop in almost all cases did not affect the ability of cytochrome to bind to cardiolipin.

View Article and Find Full Text PDF

Surface-enhanced Raman spectroscopy (SERS) is a promising tool that can be used in the detection of molecular changes triggered by disease development. Cardiovascular diseases (CVDs) are caused by multiple pathologies originating at the cellular level. The identification of these deteriorations can provide a better understanding of CVD mechanisms, and the monitoring of the identified molecular changes can be employed in the development of novel biosensor tools for early diagnostics.

View Article and Find Full Text PDF

A host of chronic inflammatory diseases are accelerated by the formation of the powerful oxidant hypochlorous acid (HOCl) by myeloperoxidase (MPO). In the presence of thiocyanate (SCN), the production of HOCl by MPO is decreased in favour of the formation of a milder oxidant, hypothiocyanous acid (HOSCN). The role of HOSCN in disease has not been fully elucidated, though there is increasing interest in using SCN therapeutically in different disease settings.

View Article and Find Full Text PDF

Blood oxygenation in cerebral vessels is an essential parameter to evaluate brain function and to investigate the coupling between local blood flow and neuronal activity. We apply resonance Raman spectroscopy in vivo to study hemoglobin oxygenation in cortex vessels of anesthetized ventilated mice. We demonstrate that the pairs of Raman peaks at 1355 and1375 cm (symmetric vibrations of pyrrol half-rings in the heme molecule), 1552 and 1585 cm and 1602 and 1638 cm (vibrations of methine bridges in heme molecule) are reliable markers for quantitative estimation of the relative amount of oxyhemoglobin in venules, arterioles, and capillaries.

View Article and Find Full Text PDF

We investigate functional role of the P76GTKMIFA83 fragment of the primary structure of cytochrome c. Based on the data obtained by the analysis of informational structure (ANIS), we propose a model of functioning of cytochrome c. According to this model, conformational rearrangements of the P76GTKMIFA83 loop fragment have a significant effect on conformational mobility of the heme.

View Article and Find Full Text PDF

A great enhancement in Raman scattering (SERS) from heme-containing submembrane biomolecules inside intact erythrocytes and functional mitochondria is demonstrated for the first time using silver-silica beads prepared using a new method involving aerosol pyrolysis with aqueous diamminesilver(i) hydroxide as a unique source of plasmonic nanoparticles for SiO microspheres. The recorded SERS spectra reveal a set of characteristic peaks at 750, 1127, 1170, 1371, 1565, 1585 and 1638 cm, resulting from the normal group vibrations of the pyrrole rings, methine bridges and side radicals in the heme molecules. The SERS spectra of functional mitochondria are sensitive to the activity of the mitochondrial electron transport chain, thus making the method a novel label-free approach to monitor the redox state and conformation of cytochromes in their natural cell environment.

View Article and Find Full Text PDF

Selective study of the electron transport chain components in living mitochondria is essential for fundamental biophysical research and for the development of new medical diagnostic methods. However, many important details of inter- and intramembrane mitochondrial processes have remained in shadow due to the lack of non-invasive techniques. Here we suggest a novel label-free approach based on the surface-enhanced Raman spectroscopy (SERS) to monitor the redox state and conformation of cytochrome c in the electron transport chain in living mitochondria.

View Article and Find Full Text PDF

We developed a Raman spectroscopy-based approach for simultaneous study of redox changes in c-and b-type cytochromes and for a semiquantitative estimation of the amount of oxygenated myoglobin in a perfused rat heart. Excitation at 532 nm was used to obtain Raman scattering of the myocardial surface of the isolated heart at normal and hypoxic conditions. Raman spectra of the heart under normal pO2 demonstrate unique peaks attributable to reduced c-and b-type cytochromes and oxymyoglobin (oMb).

View Article and Find Full Text PDF

This paper presents a nonivasive approach to study redox state of reduced cytochromes c, c1 and b of complexes II and III in mitochondria of live cardiomyocytes by means of Raman microspectroscopy. For the first time with the proposed approach we perform studies of rod- and round-shaped cardiomyocytes, representing different morphological and functional states. Raman mapping and cluster analysis reveal that these cardiomyocytes differ in the amounts of reduced cytochromes c, c1 and b.

View Article and Find Full Text PDF

The advantages and features of the integrated application of methods of atomic force microscopy, laser interference microscopy and Raman microscopy in the study of erythrocytes was discussed. For the successful application of Raman microscopy in surface enhanced Raman spectroscopy mode the silver colloids was using. The dependence of the enhancement of Raman signals from silver colloids size was demonstrated.

View Article and Find Full Text PDF

Effects of strict 105-d isolation on blood antioxidant status, erythrocyte membrane processes and oxygen-binding properties of hemoglobin were studied in 6 male volunteers (25 to 40 y.o.) in ground-based simulation of a mission to Mars (experiment Mars-105).

View Article and Find Full Text PDF

The metalloprotein hemoglobin (Hb) was studied using surface enhanced resonance Raman spectroscopy (SERRS) and surface enhanced resonance Raman optical activity (SERROA). The SERROA results are analyzed and compared with the SERRS, and the later to the resonance Raman (RRS) performed on Hb. The SERRS measurements careful optimization, with respect to the concentration and volume ratio of the analyte to colloids, enables for the first time SERROA of this molecule.

View Article and Find Full Text PDF

The article presents a noninvasive approach to the study of erythrocyte properties by means of a comparative analysis of signals obtained by surface-enhanced Raman spectroscopy (SERS) and resonance Raman spectroscopy (RS). We report step-by-step the procedure for preparing experimental samples containing erythrocytes in their normal physiological environment in a mixture of colloid solution with silver nanoparticles and the procedure for the optimization of SERS conditions to achieve high signal enhancement without affecting the properties of living erythrocytes. By means of three independent techniques, we demonstrate that under the proposed conditions a colloid solution of silver nanoparticles does not affect the properties of erythrocytes.

View Article and Find Full Text PDF

The paper describes a detailed mechanism-based model of a tripartite synapse consisting of P- and R-neurons together with a giant glial cell in the ganglia of the medical leech (Hirudo medicinalis), which is a useful object for experimental studies in situ. We describe the two main pathways of the glial cell activation: (1) via IP(3) production and Ca(2 +) release from the endoplasmic reticulum and (2) via increase of the extracellular potassium concentration, glia depolarization, and opening of voltage-dependent Ca(2 +) channels. We suggest that the second pathway is the more significant for establishing the positive feedback in glutamate release that is critical for the self-sustained activity of the postsynaptic neuron.

View Article and Find Full Text PDF

We propose a functional mathematical model for neuron-astrocyte networks. The model incorporates elements of the tripartite synapse and the spatial branching structure of coupled astrocytes. We consider glutamate-induced calcium signaling as a specific mode of excitability and transmission in astrocytic-neuronal networks.

View Article and Find Full Text PDF

Changes in the refractive index of the cytoplasm and the affinity of haemoporphyrin of erythrocyte haemoglobin to oxygen (pH, 2,3-diphosphoglycerate) have been investigated using laser interference microscopy and Raman spectroscopy. It has been established that a decrease in pH and an increase in the content of 2,3-diphosphoglycerate are accompanied by changes in both the form of the cell and the refractive index of the cytoplasm and the affinity of haemoporphyrin of hemoglobin to oxygen. It has been shown that as pH is reduced, the capacity of haemoporphyrin for binding oxygen decreases and as the concentration of 2,3-diphosphoglycerate is increased, the ability of haemoporphyrin for oxygen reabsorption increases.

View Article and Find Full Text PDF